使用Python中的2D数组系数在x、y和z的笛卡尔积上评估3D Chebyshev级数
要在x、y和z的笛卡尔积上评估3D Chebyshev级数,可以在Python中使用polynomial.chebgrid3d(x,y,z)方法。如果c的维度少于3个,则隐式地向其形状添加1以使其成为3D。结果的形状将为c.shape [3:] + x.shape + y.shape + z.shape。
参数x、y和z是评估三维级数的点在x、y和z的笛卡尔积上。如果x,y或z是列表或元组,则首先将其转换为ndarray,否则它将保持不变,并且,如果它不是ndarray,则将其视为标量。
参数c是按照系数i,j的级数的顺序排序的系数数组,这些系数包含在c [i,j]中。如果c的维数大于2,则其余索引枚举多个系数集。
步骤
首先,请导入必需的库 –
import numpy as np
from numpy.polynomial import chebyshev as C
创建2D系数数组 –
c = np.arange(4).reshape(2,2)
显示数组 –
print("Our Array...\n",c)
检查维度 –
print("\nDimensions of our Array...\n",c.ndim)
获取数据类型 –
print("\nDatatype of our Array object...\n",c.dtype)
获取形状 –
print("\nShape of our Array object...\n",c.shape)
要在x、y和z的笛卡尔积上评估3D Chebyshev级数,请使用polynomial.chebgrid3d(x,y,z)方法 –
print("\nResult...\n",C.chebgrid3d([1,2],[1,2], [1,2], c))
例子
import numpy as np
from numpy.polynomial import chebyshev as C
# Create a 2d array of coefficients
c = np.arange(4).reshape(2,2)
# Display the array
print("Our Array...\n",c)
# Check the Dimensions
print("\nDimensions of our Array...\n",c.ndim)
# Get the Datatype
print("\nDatatype of our Array object...\n",c.dtype)
# Get the Shape
print("\nShape of our Array object...\n",c.shape)
# To evaluate a 3-D Chebyshev series on the Cartesian product of x, y, z, use the polynomial.chebgrid3d(x, y, z) method in Python
print("\nResult...\n",C.chebgrid3d([1,2],[1,2], [1,2], c))
输出
Our Array...
[[0 1]
[2 3]]
Dimensions of our Array...
2
Datatype of our Array object...
int64
Shape of our Array object...
(2, 2)
Result...
[[17. 28.]
[28. 46.]]