Python Numpy np.laggauss()方法
np.laggauss() 计算Gauss-Laguerre正交的样本点和权重。这些样本点和权重将正确地在区间[0, inf]上整合度数为2*度-1或更小的多项式,权重函数f(x) = exp(-x)
语法: np.laggauss(deg)
参数:
deg : [int] 样本点和权重的数量。它必须>=1。
返回:
- [ndarray] 包含样本点的1-D ndarray。
- [ndarray] 包含权重的1-D ndarray。
代码#1:
# Python program explaining
# numpy.laggauss() method
# importing numpy as np
# and numpy.polynomial.laguerre module as geek
import numpy as np
import numpy.polynomial.laguerre as geek
# Input degree = 2
degree = 2
# using np.laggauss() method
res = geek.laggauss(degree)
# Resulting array of sample point and weight
print (res)
输出:
(array([ 0.58578644, 3.41421356]), array([ 0.85355339, 0.14644661]))
代码#2:
# Python program explaining
# numpy.laggauss() method
# importing numpy as np
# and numpy.polynomial.laguerre module as geek
import numpy as np
import numpy.polynomial.laguerre as geek
# Input degree
degree = 3
# using np.laggauss() method
res = geek.laggauss(degree)
# Resulting array of sample point and weight
print (res)
输出:
(array([ 0.41577456, 2.29428036, 6.28994508]), array([ 0.71109301, 0.27851773, 0.01038926]))