可对角化矩阵-是线性代数和矩阵论中重要的一类矩阵。如果一个方块矩阵 A 相似于对角矩阵,也就是说,如果存在一个可逆矩阵 P 使得 P−1AP 是对角矩阵,则它就被称为可对角化的。如果 V 是有限维度的向量空间,则线性映射 T : V → V 被称为可对角化的,如果存在 V 的一个基,T 关于它可被表示为对角矩阵。对角化是找到可对角化矩阵或映射的相应对角矩阵的过程。
在域 F 上的 n × n 矩阵 A 是可对角化的,当且仅当它的特征空间的维度等于 n,它为真当且仅当存在由 A 的特征向量组成的 Fn 的基。如果找到了这样的基,可以形成有基向量作为纵列的矩阵 P,而 P−1AP 将是对角矩阵。这个矩阵的对角元素是 A 的特征值。
线性映射 T : V → V 是可对角化的,当且仅当它的特征空间的维度等于 dim(V),它为真当且仅当存在由 T 的特征向量组成的 V 的基。T 关于这个基将表示为对角矩阵。这个矩阵的对角元素是 T 的特征值。
另一个特征化: 矩阵或线性映射在域 F 上可对角化的,当且仅当它的极小多项式在 F 上有不同的线性因子。
下列充分(但非必要)条件经常是有用的。
n × n 矩阵 A 只在域 F 上可对角化的,如果它在 F 中有 n 个不同的特征值,就是说,如果它的特征多项式在 F 中有 n 个不同的根。
线性映射 T : V → V 带有 n=dim(V) 是可对角化的,如果它有 n 个不同的特征值,就是说它的特征多项式在 F 中有 n 个不同的根。
作为经验规则,在复数域 C 上几乎所有矩阵都是可对角化的。更精确地说: 在 C 上不可对角化的复数 n × n 矩阵的集合被当作 Cn×n 的子集,它是关于勒贝格测度的零集。也可以说可对角化矩阵形成了关于 扎里斯基拓扑的稠密子集 : 补位于特征多项式的判别式变为零的集合内,后者是超平面。从中得出的还有在平常的(强拓扑)中密度由范数给出。
例如,考虑下列矩阵: M=[a0b−ab].
计算 M 个各次幂揭示了一个惊人的模式: M2=[a20b2−a2b2],M3=[a30b3−a3b3],M4=[a40b4−a4b4],…
上面的现象可以通过对角化 M 来解释。要如此我们需要由 M 的特征向量组成的 R2 的基。一个这样的特征向量基给出自 u=[10]=e1,v=[11]=e1+e2,
这里的 ei 指示 Rn 的标准基。 逆的基变更给出自
u=[10]=e1,v=[11]=e1+e2.
直接计算证实
Mu=au,Mv=bv .
所以,a 和 b 是分别是对应于 u 和 v 的特征值。 根据矩阵乘法的线性,我们有