Opencv Deep Learning

神经网络(Neural Network)第一步——深度学习(Deep Learning)

将神经网络作为识别器,这就是现在流行的深度学习。

下面的代码是包含输入层、中间层(Unit 数:64)、输出层(1)的网络。这是实现异或逻辑的网络.

import numpy as np

np.random.seed(0)

class NN:
    def __init__(self, ind=2, w=64, outd=1, lr=0.1):
        self.w1 = np.random.normal(0, 1, [ind, w])
        self.b1 = np.random.normal(0, 1, [w])
        self.wout = np.random.normal(0, 1, [w, outd])
        self.bout = np.random.normal(0, 1, [outd])
        self.lr = lr

    def forward(self, x):
        self.z1 = x
        self.z2 = sigmoid(np.dot(self.z1, self.w1) + self.b1)
        self.out = sigmoid(np.dot(self.z2, self.wout) + self.bout)
        return self.out

    def train(self, x, t):
        # backpropagation output layer
        #En = t * np.log(self.out) + (1-t) * np.log(1-self.out)
        En = (self.out - t) * self.out * (1 - self.out)
        grad_En = En #np.array([En for _ in range(t.shape[0])])
        grad_wout = np.dot(self.z2.T, En)
        grad_bout = np.dot(np.ones([En.shape[0]]), En)
        self.wout -= self.lr * grad_wout#np.expand_dims(grad_wout, axis=-1)
        self.bout -= self.lr * grad_bout

        # backpropagation inter layer
        grad_u1 = np.dot(En, self.wout.T) * self.z2 * (1 - self.z2)
        grad_w1 = np.dot(self.z1.T, grad_u1)
        grad_b1 = np.dot(np.ones([grad_u1.shape[0]]), grad_u1)
        self.w1 -= self.lr * grad_w1
        self.b1 -= self.lr * grad_b1

def sigmoid(x):
    return 1. / (1. + np.exp(-x))

train_x = np.array([[0,0], [0,1], [1,0], [1,1]], dtype=np.float32)
train_t = np.array([[0], [1], [1], [0]], dtype=np.float32)

nn = NN(ind=train_x.shape[1])

# train
for i in range(1000):
    nn.forward(train_x)
    nn.train(train_x, train_t)

# test
for j in range(4):
    x = train_x[j]
    t = train_t[j]
    print("in:", x, "pred:", nn.forward(x))
Python

,我们可以再增加一层中间层进行学习和测试。

答案:

in: [0. 0.] pred: [0.03724313]
in: [0. 1.] pred: [0.95885516]
in: [1. 0.] pred: [0.9641076]
in: [1. 1.] pred: [0.03937037]
Bash

python实现:

import numpy as np

np.random.seed(0)

# neural network
class NN:
    def __init__(self, ind=2, w=64, w2=64, outd=1, lr=0.1):
        # layer 1 weight
        self.w1 = np.random.normal(0, 1, [ind, w])
        # layer 1 bias
        self.b1 = np.random.normal(0, 1, [w])
        # layer 2 weight
        self.w2 = np.random.normal(0, 1, [w, w2])
        # layer 2 bias
        self.b2 = np.random.normal(0, 1, [w2])
        # output layer weight
        self.wout = np.random.normal(0, 1, [w2, outd])
        # output layer bias
        self.bout = np.random.normal(0, 1, [outd])
        # learning rate
        self.lr = lr

    def forward(self, x):
        # input tensor
        self.z1 = x
        # layer 1 output tensor
        self.z2 = sigmoid(np.dot(self.z1, self.w1) + self.b1)
        # layer 2 output tensor
        self.z3 = sigmoid(np.dot(self.z2, self.w2) + self.b2)
        # output layer tensor
        self.out = sigmoid(np.dot(self.z3, self.wout) + self.bout)
        return self.out

    def train(self, x, t):
        # backpropagation output layer
        #En = t * np.log(self.out) + (1-t) * np.log(1-self.out)
        En = (self.out - t) * self.out * (1 - self.out)
        # get gradients for weight and bias
        grad_wout = np.dot(self.z3.T, En)
        grad_bout = np.dot(np.ones([En.shape[0]]), En)
        # update weight and bias
        self.wout -= self.lr * grad_wout
        self.bout -= self.lr * grad_bout

        # backpropagation inter layer
        # get gradients for weight and bias
        grad_u2 = np.dot(En, self.wout.T) * self.z3 * (1 - self.z3)
        grad_w2 = np.dot(self.z2.T, grad_u2)
        grad_b2 = np.dot(np.ones([grad_u2.shape[0]]), grad_u2)
        # update weight and bias
        self.w2 -= self.lr * grad_w2
        self.b2 -= self.lr * grad_b2

        # get gradients for weight and bias
        grad_u1 = np.dot(grad_u2, self.w2.T) * self.z2 * (1 - self.z2)
        grad_w1 = np.dot(self.z1.T, grad_u1)
        grad_b1 = np.dot(np.ones([grad_u1.shape[0]]), grad_u1)
        # update weight and bias
        self.w1 -= self.lr * grad_w1
        self.b1 -= self.lr * grad_b1

# sigmoid
def sigmoid(x):
    return 1. / (1. + np.exp(-x))

# train
def train_nn(nn, train_x, train_t, iteration_N=5000):
    for i in range(5000):
        # feed-forward data
        nn.forward(train_x)
        #print("ite>>", i, 'y >>', nn.forward(train_x))
        # update parameters
        nn.train(train_x, train_t)

    return nn


# test
def test_nn(nn, test_x, test_t):
    for j in range(len(test_x)):
        x = train_x[j]
        t = train_t[j]
        print("in:", x, "pred:", nn.forward(x))



# train data
train_x = np.array([[0,0], [0,1], [1,0], [1,1]], dtype=np.float32)

# train label data
train_t = np.array([[0], [1], [1], [0]], dtype=np.float32)

# prepare neural network
nn = NN()

# train
nn = train_nn(nn, train_x, train_t, iteration_N=5000)

# test
test_nn(nn, train_x, train_t)
Python

Python教程

Java教程

Web教程

数据库教程

图形图像教程

大数据教程

开发工具教程

计算机教程

登录

注册