请根据4-连接数将renketsu.png
上色。
4-连接数可以用于显示附近像素的状态。通常,对于中心像素x_0(x,y)不为零的情况,邻域定义如下:
\begin{matrix}
x_4(x-1,y-1)& x_3(x,y-1)& x_2(x+1,y-1)\\
x_5(x-1,y)& x_0(x,y) &x_1(x+1,y)\\
x_6(x-1,y+1)& x_7(x,y+1)& x_8(x+1,y+1)
\end{matrix}
这里,4-连接数通过以下等式计算:
S = (x_1 – x_1\ x_2\ x_3) + (x_3 – x_3\ x_4\ x_5) + (x_5 – x_5\ x_6\ x_7) + (x_7 – x_7\ x_8\ x_1)
S的取值范围为[0,4]:
– S = 0: 内部点;
– S = 1:端点;
– S = 2:连接点;
– S = 3:分支点;
– S = 4:交叉点。
python实现:
import cv2
import numpy as np
import matplotlib.pyplot as plt
# Connect 4
def connect_4(img):
# get shape
H, W, C = img.shape
# prepare temporary image
tmp = np.zeros((H, W), dtype=np.int)
# binarize
tmp[img[..., 0] > 0] = 1
# prepare out image
out = np.zeros((H, W, 3), dtype=np.uint8)
# each pixel
for y in range(H):
for x in range(W):
if tmp[y, x] < 1:
continue
S = 0
S += (tmp[y,min(x+1,W-1)] - tmp[y,min(x+1,W-1)] * tmp[max(y-1,0),min(x+1,W-1)] * tmp[max(y-1,0),x])
S += (tmp[max(y-1,0),x] - tmp[max(y-1,0),x] * tmp[max(y-1,0),max(x-1,0)] * tmp[y,max(x-1,0)])
S += (tmp[y,max(x-1,0)] - tmp[y,max(x-1,0)] * tmp[min(y+1,H-1),max(x-1,0)] * tmp[min(y+1,H-1),x])
S += (tmp[min(y+1,H-1),x] - tmp[min(y+1,H-1),x] * tmp[min(y+1,H-1),min(x+1,W-1)] * tmp[y,min(x+1,W-1)])
if S == 0:
out[y,x] = [0, 0, 255]
elif S == 1:
out[y,x] = [0, 255, 0]
elif S == 2:
out[y,x] = [255, 0, 0]
elif S == 3:
out[y,x] = [255, 255, 0]
elif S == 4:
out[y,x] = [255, 0, 255]
out = out.astype(np.uint8)
return out
# Read image
img = cv2.imread("renketsu.png").astype(np.float32)
# connect 4
out = connect_4(img)
# Save result
cv2.imwrite("out.png", out)
cv2.imshow("result", out)
cv2.waitKey(0)
cv2.destroyAllWindows()
输入(renketsu.png):
输出: