文本挖掘和自然语言处理的区别

文本挖掘和自然语言处理的区别

自然语言处理(NLP)

自然语言处理的重要性在于使计算机系统能够识别自然语言。虽然这不再是一个方便的挑战。计算机可以识别信息的结构化,如电子表格和数据库中的表格,但是人类的语言、文本和声音形成了非结构化的数据类别,对计算机来说,识别它是一个挑战,这就是为什么需要NLP的出现。

文本挖掘

其目标是从文本中提取重要的数字指数。因此,使文本内容中包含的事实可以被一系列的算法所利用。信息可以被提取出来,以得出文件中包含的摘要。它本质上是一种人工智能技术,包括处理各种文本内容文件中的信息。许多深度学习算法被用于对文本的有效评估。在这一点上,信息是以非结构化格式保存的。

文本挖掘和自然语言处理之间的区别:

编号 文本挖掘 自然语言处理
1 文本挖掘涉及将文本内容转换为数据,并进行进一步分析。 自然语言处理的目标是使计算机系统能够理解人类语言或文本。
2 为了处理数据,文本挖掘使用各种类型的工具和语言。 自然语言处理使用高级机器学习模型来处理数据并产生输出。
3 为了执行任务,文本挖掘不考虑语义分析。 自然语言处理考虑了语法分析和语义分析来执行任务。
4 文本挖掘的主要数据来源包括海量文档。 自然语言处理可以有多种数据来源,如标牌、语音等。
5 与NLP相比,可以很容易地测量系统性能和准确性。 在这方面,与文本挖掘相比,衡量系统性能是相当困难的。
6 文本挖掘不需要人工干预。 处理数据时,有时需要人工干预。
7 文本挖掘产生单词的模式和频率。 自然语言处理产生像语法结构的结构。
8 文本挖掘可以用来监测社交媒体。 自然语言处理可以用于网站翻译。

Python教程

Java教程

Web教程

数据库教程

图形图像教程

大数据教程

开发工具教程

计算机教程

大数据 问答