Opencv Canny边缘检测 边缘强度

怎么做Canny边缘检测的第一步——边缘强度?

  1. 使用高斯滤波;
  2. x方向和y方向上使用Sobel滤波器,在此之上求出边缘的强度和边缘的梯度;
  3. 对梯度幅值进行非极大值抑制(Non-maximum suppression)来使边缘变得更细;
  4. 使用滞后阈值来对阈值进行处理。

上面就是图像边缘检测的方法了。在这里我们先完成第一步和第二步。按照以下步骤进行处理:
1. 将图像进行灰度化处理;

  1. 将图像进行高斯滤波(5\times5s=1.4);

  2. x方向和y方向上使用Sobel滤波器,在此之上求出边缘梯度f_xf_y。边缘梯度可以按照下式求得:
    \text{edge}=\sqrt{{f_x}^2+{f_x}^2}\\
    \text{tan}=\arctan(\frac{f_y}{f_x})

  3. 使用下面的公式将梯度方向量化:
    \text{angle}=\begin{cases}
    0&(\text{if}\quad -0.4142<\tan \leq 0.4142)\\ 45&(\text{if}\quad 0.4142<\tan<2.4142)\\ 90 &(\text{if}\quad |\tan| \geq 2.4142)\\ 135 &(\text{if}\quad -2.4142<\tan \leq -0.4142) \end{cases}

请使用numpy.pad()来设置滤波器的padding吧!

python实现:

import cv2
import numpy as np
import matplotlib.pyplot as plt

def Canny_step1(img):

    # Gray scale
    def BGR2GRAY(img):
        b = img[:, :, 0].copy()
        g = img[:, :, 1].copy()
        r = img[:, :, 2].copy()

        # Gray scale
        out = 0.2126 * r + 0.7152 * g + 0.0722 * b
        out = out.astype(np.uint8)

        return out


    # Gaussian filter for grayscale
    def gaussian_filter(img, K_size=3, sigma=1.3):

        if len(img.shape) == 3:
            H, W, C = img.shape
            gray = False
        else:
            img = np.expand_dims(img, axis=-1)
            H, W, C = img.shape
            gray = True

        ## Zero padding
        pad = K_size // 2
        out = np.zeros([H + pad * 2, W + pad * 2, C], dtype=np.float)
        out[pad: pad + H, pad: pad + W] = img.copy().astype(np.float)

        ## prepare Kernel
        K = np.zeros((K_size, K_size), dtype=np.float)
        for x in range(-pad, -pad + K_size):
            for y in range(-pad, -pad + K_size):
                K[y + pad, x + pad] = np.exp( - (x ** 2 + y ** 2) / (2 * (sigma ** 2)))
        K /= (2 * np.pi * sigma * sigma)
        K /= K.sum()

        tmp = out.copy()

        # filtering
        for y in range(H):
            for x in range(W):
                for c in range(C):
                    out[pad + y, pad + x, c] = np.sum(K * tmp[y : y + K_size, x : x + K_size, c]) 

        out = np.clip(out, 0, 255)
        out = out[pad : pad + H, pad : pad + W]
        #out = out.astype(np.uint8)

        if gray:
            out = out[..., 0]

        return out


    # sobel filter
    def sobel_filter(img, K_size=3):
        if len(img.shape) == 3:
            H, W, C = img.shape
        else:
            #img = np.expand_dims(img, axis=-1)
            H, W = img.shape

        # Zero padding
        pad = K_size // 2
        out = np.zeros((H + pad * 2, W + pad * 2), dtype=np.float)
        out[pad : pad + H, pad : pad + W] = img.copy().astype(np.float)
        tmp = out.copy()

        out_v = out.copy()
        out_h = out.copy()

        ## Sobel vertical
        Kv = [[1., 2., 1.],[0., 0., 0.], [-1., -2., -1.]]
        ## Sobel horizontal
        Kh = [[1., 0., -1.],[2., 0., -2.],[1., 0., -1.]]

        # filtering
        for y in range(H):
            for x in range(W):
                out_v[pad + y, pad + x] = np.sum(Kv * (tmp[y : y + K_size, x : x + K_size]))
                out_h[pad + y, pad + x] = np.sum(Kh * (tmp[y : y + K_size, x : x + K_size]))

        out_v = np.clip(out_v, 0, 255)
        out_h = np.clip(out_h, 0, 255)

        out_v = out_v[pad : pad + H, pad : pad + W].astype(np.uint8)
        out_h = out_h[pad : pad + H, pad : pad + W].astype(np.uint8)

        return out_v, out_h


    def get_edge_angle(fx, fy):
        # get edge strength
        edge = np.sqrt(np.power(fx, 2) + np.power(fy, 2))
        fx = np.maximum(fx, 1e-5)

        # get edge angle
        angle = np.arctan(fy / fx)

        return edge, angle


    def angle_quantization(angle):
        angle = angle / np.pi * 180
        angle[angle < -22.5] = 180 + angle[angle < -22.5]
        _angle = np.zeros_like(angle, dtype=np.uint8)
        _angle[np.where(angle <= 22.5)] = 0
        _angle[np.where((angle > 22.5) & (angle <= 67.5))] = 45
        _angle[np.where((angle > 67.5) & (angle <= 112.5))] = 90
        _angle[np.where((angle > 112.5) & (angle <= 157.5))] = 135

        return _angle

    # grayscale
    gray = BGR2GRAY(img)

    # gaussian filtering
    gaussian = gaussian_filter(gray, K_size=5, sigma=1.4)

    # sobel filtering
    fy, fx = sobel_filter(gaussian, K_size=3)

    # get edge strength, angle
    edge, angle = get_edge_angle(fx, fy)

    # angle quantization
    angle = angle_quantization(angle)

    return edge, angle


# Read image
img = cv2.imread("imori.jpg").astype(np.float32)

# Canny (step1)
edge, angle = Canny_step1(img)

edge = edge.astype(np.uint8)
angle = angle.astype(np.uint8)

# Save result
cv2.imwrite("out.jpg", edge)
cv2.imshow("result", edge)
cv2.imwrite("out2.jpg", angle)
cv2.imshow("result2", angle)
cv2.waitKey(0)
cv2.destroyAllWindows()

c++实现:

#include <opencv2/core.hpp>
#include <opencv2/highgui.hpp>
#include <iostream>
#include <math.h>


// RGB to Gray scale
cv::Mat BGR2GRAY(cv::Mat img){
  // get height and width
  int height = img.rows;
  int width = img.cols;
  int channel = img.channels();

  // prepare output
  cv::Mat out = cv::Mat::zeros(height, width, CV_8UC1);

  // BGR -> Gray
  for (int y = 0; y < height; y++){
    for (int x = 0; x < width; x++){
      out.at<uchar>(y, x) = (int)((float)img.at<cv::Vec3b>(y, x)[0] * 0.0722 + \
                  (float)img.at<cv::Vec3b>(y, x)[1] * 0.7152 + \
                  (float)img.at<cv::Vec3b>(y, x)[2] * 0.2126);
    }
  }
  return out;
}

float clip(float value, float min, float max){
  return fmin(fmax(value, 0), 255);
}

// gaussian filter
cv::Mat gaussian_filter(cv::Mat img, double sigma, int kernel_size){
  int height = img.rows;
  int width = img.cols;
  int channel = img.channels();

  // prepare output
  cv::Mat out = cv::Mat::zeros(height, width, CV_8UC3);
  if (channel == 1) {
    out = cv::Mat::zeros(height, width, CV_8UC1);
  }

  // prepare kernel
  int pad = floor(kernel_size / 2);
  int _x = 0, _y = 0;
  double kernel_sum = 0;

  // get gaussian kernel
  float kernel[kernel_size][kernel_size];

  for (int y = 0; y < kernel_size; y++){
    for (int x = 0; x < kernel_size; x++){
      _y = y - pad;
      _x = x - pad; 
      kernel[y][x] = 1 / (2 * M_PI * sigma * sigma) * exp( - (_x * _x + _y * _y) / (2 * sigma * sigma));
      kernel_sum += kernel[y][x];
    }
  }

  for (int y = 0; y < kernel_size; y++){
    for (int x = 0; x < kernel_size; x++){
      kernel[y][x] /= kernel_sum;
    }
  }

  // filtering
  double v = 0;

  for (int y = 0; y < height; y++){
    for (int x = 0; x < width; x++){
      // for BGR
      if (channel == 3){
        for (int c = 0; c < channel; c++){
          v = 0;
          for (int dy = -pad; dy < pad + 1; dy++){
            for (int dx = -pad; dx < pad + 1; dx++){
              if (((x + dx) >= 0) && ((y + dy) >= 0) && ((x + dx) < width) && ((y + dy) < height)){
                v += (double)img.at<cv::Vec3b>(y + dy, x + dx)[c] * kernel[dy + pad][dx + pad];
              }
            }
          }
          out.at<cv::Vec3b>(y, x)[c] = (uchar)clip(v, 0, 255);
        }
      } else {
        // for Gray
        v = 0;
        for (int dy = -pad; dy < pad + 1; dy++){
          for (int dx = -pad; dx < pad + 1; dx++){
            if (((x + dx) >= 0) && ((y + dy) >= 0) && ((x + dx) < width) && ((y + dy) < height)){
              v += (double)img.at<uchar>(y + dy, x + dx) * kernel[dy + pad][dx + pad];
            }
          }
        }
        out.at<uchar>(y, x) = (uchar)clip(v, 0, 255);
      }
    }
  }
  return out;
}

// Sobel filter
cv::Mat sobel_filter(cv::Mat img, int kernel_size, bool horizontal){
  int height = img.rows;
  int width = img.cols;
  int channel = img.channels();

  // prepare output
  cv::Mat out = cv::Mat::zeros(height, width, CV_8UC1);

  // prepare kernel
  double kernel[kernel_size][kernel_size] = {{1, 2, 1}, {0, 0, 0}, {-1, -2, -1}};

  if (horizontal){
    kernel[0][1] = 0;
    kernel[0][2] = -1;
    kernel[1][0] = 2;
    kernel[1][2] = -2;
    kernel[2][0] = 1;
    kernel[2][1] = 0;
  }

  int pad = floor(kernel_size / 2);

  double v = 0;

  // filtering  
  for (int y = 0; y < height; y++){
    for (int x = 0; x < width; x++){
      v = 0;
      for (int dy = -pad; dy < pad + 1; dy++){
        for (int dx = -pad; dx < pad + 1; dx++){
          if (((y + dy) >= 0) && (( x + dx) >= 0) && ((y + dy) < height) && ((x + dx) < width)){
            v += (double)img.at<uchar>(y + dy, x + dx) * kernel[dy + pad][dx + pad];
          }
        }
      }
      out.at<uchar>(y, x) = (uchar)clip(v, 0, 255);
    }
  }
  return out;
}

// get edge
cv::Mat get_edge(cv::Mat fx, cv::Mat fy){
  // get height and width
  int height = fx.rows;
  int width = fx.cols;

  // prepare output
  cv::Mat out = cv::Mat::zeros(height, width, CV_8UC1);

  double _fx, _fy;

  for(int y = 0; y < height; y++){
    for(int x = 0; x < width; x++){
      _fx = (double)fx.at<uchar>(y, x);
      _fy = (double)fy.at<uchar>(y, x);

      out.at<uchar>(y, x) = (uchar)clip(sqrt(_fx * _fx + _fy * _fy), 0, 255);
    }
  }

  return out;
}

// get angle
cv::Mat get_angle(cv::Mat fx, cv::Mat fy){
  // get height and width
  int height = fx.rows;
  int width = fx.cols;

  // prepare output
  cv::Mat out = cv::Mat::zeros(height, width, CV_8UC1);

  double _fx, _fy;
  double angle;

  for(int y = 0; y < height; y++){
    for(int x = 0; x < width; x++){
      _fx = fmax((double)fx.at<uchar>(y, x), 0.000001);
      _fy = (double)fy.at<uchar>(y, x);

      angle = atan2(_fy, _fx);
      angle = angle / M_PI * 180;

      if(angle < -22.5){
        angle = 180 + angle;
      } else if (angle >= 157.5) {
        angle = angle - 180;
      }

      //std::cout << angle << " " ;

      // quantization
      if (angle <= 22.5){
        out.at<uchar>(y, x) = 0;
      } else if (angle <= 67.5){
        out.at<uchar>(y, x) = 45;
      } else if (angle <= 112.5){
        out.at<uchar>(y, x) = 90;
      } else {
        out.at<uchar>(y, x) = 135;
      }
    }
  }

  return out;
}


// Canny step 1
int Canny_step1(cv::Mat img){
  // BGR -> Gray
  cv::Mat gray = BGR2GRAY(img);

  // gaussian filter
  cv::Mat gaussian = gaussian_filter(gray, 1.4, 5);

  // sobel filter (vertical)
  cv::Mat fy = sobel_filter(gaussian, 3, false);

  // sobel filter (horizontal)
  cv::Mat fx = sobel_filter(gaussian, 3, true);

  // get edge
  cv::Mat edge = get_edge(fx, fy);

  // get angle
  cv::Mat angle = get_angle(fx, fy);

  //cv::imwrite("out.jpg", out);
  cv::imshow("answer(edge)", edge);
  cv::imshow("answer(angle)", angle);
  cv::waitKey(0);
  cv::destroyAllWindows();

  return 0;
}

int main(int argc, const char* argv[]){
  // read image
  cv::Mat img = cv::imread("imori.jpg", cv::IMREAD_COLOR);

  // Canny step 1
  Canny_step1(img);

  return 0;
}

输入:

Opencv Canny边缘检测 边缘强度

输出(梯度幅值):

Opencv Canny边缘检测 边缘强度

输出(梯度方向):

Opencv Canny边缘检测 边缘强度

Python教程

Java教程

Web教程

数据库教程

图形图像教程

大数据教程

开发工具教程

计算机教程