Python Numpy MaskedArray.cumprod()函数
numpy.MaskedArray.cumprod() 返回在给定轴上被屏蔽的数组元素的累积乘积。在计算过程中,被屏蔽的值在内部被设置为1。然而,他们的位置被保存,结果将在相同的位置被屏蔽。
语法: numpy.ma.cumprod(axis=None, dtype=None, out=None)
参数:
axis : [ int, optional] 计算累积乘积的轴。默认(无)是在扁平化的数组上计算累积积。
dtype : [dtype, optional] 返回数组的类型,以及元素相乘的累加器的类型。如果没有指定dtype,默认为arr的dtype,除非arr的整数dtype的精度小于默认平台的整数。在这种情况下,将使用默认的平台整数来代替。
out : [ndarray, optional] 一个储存结果的位置。
-> 如果提供,它必须有一个输入广播到的形状。
-> 如果没有提供或没有,将返回一个新分配的数组。
返回 : [cumprod_along_axis, ndarray] 返回一个保存结果的新数组,除非指定out,在这种情况下,返回一个对out的引用。
代码#1:
# Python program explaining
# numpy.MaskedArray.cumprod() method
# importing numpy as geek
# and numpy.ma module as ma
import numpy as geek
import numpy.ma as ma
# creating input array
in_arr = geek.array([[1, 2], [ 3, -1], [ 5, -3]])
print ("Input array : ", in_arr)
# Now we are creating a masked array.
# by making entry as invalid.
mask_arr = ma.masked_array(in_arr, mask =[[1, 0], [ 1, 0], [ 0, 0]])
print ("Masked array : ", mask_arr)
# applying MaskedArray.cumprod
# methods to masked array
out_arr = mask_arr.cumprod()
print ("cumulative product of masked array along default axis : ", out_arr)
输出:
Input array : [[ 1 2]
[ 3 -1]
[ 5 -3]]
Masked array : [[-- 2]
[-- -1]
[5 -3]]
cumulative sum of masked array along default axis : [-- 2 -- -2 -10 30]
代码#2:
# Python program explaining
# numpy.MaskedArray.cumprod() method
# importing numpy as geek
# and numpy.ma module as ma
import numpy as geek
import numpy.ma as ma
# creating input array
in_arr = geek.array([[1, 0, 3], [ 4, 1, 6]])
print ("Input array : ", in_arr)
# Now we are creating a masked array.
# by making one entry as invalid.
mask_arr = ma.masked_array(in_arr, mask =[[ 0, 0, 0], [ 0, 0, 1]])
print ("Masked array : ", mask_arr)
# applying MaskedArray.cumprod methods
# to masked array
out_arr1 = mask_arr.cumprod(axis = 0)
print ("cumulative product of masked array along 0 axis : ", out_arr1)
out_arr2 = mask_arr.cumprod(axis = 1)
print ("cumulative product of masked array along 1 axis : ", out_arr2)
输出:
Input array : [[1 0 3]
[4 1 6]]
Masked array : [[1 0 3]
[4 1 --]]
cumulative product of masked array along 0 axis : [[1 0 3]
[4 0 --]]
cumulative product of masked array along 1 axis : [[1 0 0]
[4 4 --]]