Python Numpy MaskedArray.ravel()函数
numpy.MaskedArray.ravel()函数被用来返回一个一维版本的自我屏蔽数组,作为一个视图。
语法: numpy.ma.ravel(self, order='C')
参数:
order: [‘C’, ‘F’, ‘A’, ‘K’, optional] 默认情况下,使用’C’索引顺序。
-> 使用这个索引顺序读取a的元素。
-> ‘C’意味着以类似C的顺序对元素进行索引,最后一个轴索引变化最快,回到第一个轴索引变化最慢。
-> ‘F’意味着以类似Fortran的索引顺序对元素进行索引,第一个索引变化最快,而最后一个索引变化最慢。
-> ‘K’意味着按照元素在内存中出现的顺序来读取,除了在跨度为负数时将数据反转。
返回 : [MaskedArray] 扁平化的一维屏蔽阵列。
代码#1:
# Python program explaining
# numpy.MaskedArray.ravel() method
# importing numpy as geek
# and numpy.ma module as ma
import numpy as geek
import numpy.ma as ma
# creating input array
in_arr = geek.array([[1, 2], [ 3, -1]])
print ("Input array : ", in_arr)
# Now we are creating a masked array.
# by making two entry as invalid.
mask_arr = ma.masked_array(in_arr, mask =[[0, 1], [ 1, 0]])
print ("Masked array : ", mask_arr)
# applying MaskedArray.ravel methods to mask array
out_arr = mask_arr.ravel()
print ("1D view of masked array : ", out_arr)
输出:
Input array : [[ 1 2]
[ 3 -1]]
Masked array : [[1 --]
[-- -1]]
1D view of masked array : [1 -- -- -1]
代码#2:
# Python program explaining
# numpy.MaskedArray.ravel() method
# importing numpy as geek
# and numpy.ma module as ma
import numpy as geek
import numpy.ma as ma
# creating input array
in_arr = geek.array([[[ 2e8, 3e-5]], [[ -45.0, 2e5]]])
print ("Input array : ", in_arr)
# Now we are creating a masked array.
# by making one entry as invalid.
mask_arr = ma.masked_array(in_arr, mask =[[[ 1, 0]], [[ 0, 0]]])
print ("3D Masked array : ", mask_arr)
# applying MaskedArray.ravel methods to mask array
out_arr = mask_arr.ravel()
print ("1D view of masked array : ", out_arr)
输出:
Input array : [[[ 2.0e+08 3.0e-05]]
[[-4.5e+01 2.0e+05]]]
3D Masked array : [[[-- 3e-05]]
[[-45.0 200000.0]]]
1D view of masked array : [-- 3e-05 -45.0 200000.0]