Python Numpy MaskedArray.std()函数
numpy.MaskedArray.std()函数用于计算沿指定轴的标准差。这里忽略了被屏蔽的条目。默认情况下,标准差是针对扁平化的数组计算的,否则就在指定的轴上计算。
语法: numpy.ma.std(arr, axis=None, dtype=None, out=None, ddof=0, keepdims=False)
参数:
arr : [ ndarray ] 输入屏蔽的数组。
axis : [ int, optional] 计算标准偏差的轴。
dtype : [dtype, optional] 返回数组的类型,以及与元素相乘的累积器的类型。
out : [ndarray, optional] 一个储存结果的位置。
-> 如果提供,它必须有一个输入广播到的形状。
-> 如果没有提供或没有,将返回一个新分配的数组。
ddof : [int, optional] “Delta Degrees of Freedom”:计算中使用的除数是N-ddof,其中N代表元素数。默认情况下ddof为零。
keepdims : [ bool, optional] 如果设置为True,被缩小的轴将作为尺寸为1的尺寸留在结果中。有了这个选项,结果将正确地针对输入阵列进行广播。
返回 : [standard_deviation_along_axis, ndarray] 返回一个保存结果的新数组,除非指定out,在这种情况下,返回一个对out的引用。
代码#1:
# Python program explaining
# numpy.MaskedArray.std() method
# importing numpy as geek
# and numpy.ma module as ma
import numpy as geek
import numpy.ma as ma
# creating input array
in_arr = geek.array([[1, 2], [ 3, -1], [ 5, -3]])
print ("Input array : ", in_arr)
# Now we are creating a masked array.
# by making entry as invalid.
mask_arr = ma.masked_array(in_arr, mask =[[1, 0], [ 1, 0], [ 0, 0]])
print ("Masked array : ", mask_arr)
# applying MaskedArray.std
# methods to masked array
out_arr = ma.std(mask_arr)
print ("standard deviation of masked array along default axis : ", out_arr)
输出:
Input array : [[ 1 2]
[ 3 -1]
[ 5 -3]]
Masked array : [[-- 2]
[-- -1]
[5 -3]]
standard deviation of masked array along default axis : 3.031088913245535
代码#2:
# Python program explaining
# numpy.MaskedArray.std() method
# importing numpy as geek
# and numpy.ma module as ma
import numpy as geek
import numpy.ma as ma
# creating input array
in_arr = geek.array([[1, 0, 3], [ 4, 1, 6]])
print ("Input array : ", in_arr)
# Now we are creating a masked array.
# by making one entry as invalid.
mask_arr = ma.masked_array(in_arr, mask =[[ 0, 0, 0], [ 0, 0, 1]])
print ("Masked array : ", mask_arr)
# applying MaskedArray.std methods
# to masked array
out_arr1 = ma.std(mask_arr, axis = 0)
print ("standard deviation of masked array along 0 axis : ", out_arr1)
out_arr2 = ma.std(mask_arr, axis = 1)
print ("standard deviation of masked array along 1 axis : ", out_arr2)
输出:
Input array : [[1 0 3]
[4 1 6]]
Masked array : [[1 0 3]
[4 1 --]]
standard deviation of masked array along 0 axis : [1.5 0.5 0.0]
standard deviation of masked array along 1 axis : [1.247219128924647 1.5]