Opencv 仿射变换旋转

如何进行仿射变换( Afine Transformations )——旋转?

  1. 使用仿射变换,逆时针旋转30度。
  2. 使用仿射变换,逆时针旋转30度并且能让全部图像显现(也就是说,单纯地做仿射变换会让图片边缘丢失,这一步中要让图像的边缘不丢失,需要耗费一些工夫)。

使用下面的式子进行逆时针方向旋转A度的仿射变换:
\left(
\begin{matrix}
x’\\
y’\\
1
\end{matrix}
\right)=
\left(
\begin{matrix}
\cos(A)&-\sin(A)&t_x\\
\sin(A)&\cos(A)&t_y\\
0&0&1
\end{matrix}
\right)\
\left(
\begin{matrix}
x\\
y\\
1
\end{matrix}
\right)

python实现:

import cv2
import numpy as np
import matplotlib.pyplot as plt


# affine
def affine(img, a, b, c, d, tx, ty):
    H, W, C = _img.shape

    # temporary image
    img = np.zeros((H+2, W+2, C), dtype=np.float32)
    img[1:H+1, 1:W+1] = _img

    # get shape of new image
    H_new = np.round(H).astype(np.int)
    W_new = np.round(W).astype(np.int)
    out = np.zeros((H_new, W_new, C), dtype=np.float32)

    # get position of new image
    x_new = np.tile(np.arange(W_new), (H_new, 1))
    y_new = np.arange(H_new).repeat(W_new).reshape(H_new, -1)

    # get position of original image by affine
    adbc = a * d - b * c
    x = np.round((d * x_new  - b * y_new) / adbc).astype(np.int) - tx + 1
    y = np.round((-c * x_new + a * y_new) / adbc).astype(np.int) - ty + 1

    # adjust center by affine
    dcx = (x.max() + x.min()) // 2 - W // 2
    dcy = (y.max() + y.min()) // 2 - H // 2

    x -= dcx
    y -= dcy

    x = np.clip(x, 0, W + 1)
    y = np.clip(y, 0, H + 1)

    # assign pixcel
    out[y_new, x_new] = img[y, x]
    out = out.astype(np.uint8)

    return out

# Read image
_img = cv2.imread("imori.jpg").astype(np.float32)


# Affine
A = 30.
theta = - np.pi * A / 180.

out = affine(img, a=np.cos(theta), b=-np.sin(theta), c=np.sin(theta), d=np.cos(theta),
 tx=0, ty=0)


# Save result
cv2.imshow("result", out)
cv2.waitKey(0)
cv2.imwrite("out.jpg", out)

c++实现:

#include <opencv2/core.hpp>
#include <opencv2/highgui.hpp>
#include <iostream>
#include <math.h>

// affine
cv::Mat affine(cv::Mat img, double a, double b, double c, double d, double tx, double ty, double theta){
  // get height and width
  int width = img.cols;
  int height = img.rows;
  int channel = img.channels();

  // get detriment
  double det = a * d - b * c;

  if (theta != 0){
    // Affine parameters
    double rad = theta / 180. * M_PI;
    a = std::cos(rad);
    b = - std::sin(rad);
    c = std::sin(rad);
    d = std::cos(rad);
    tx = 0;
    ty = 0;

    double det = a * d - b * c;

    // center transition
    double cx = width / 2.;
    double cy = height / 2.;
    double new_cx = (d * cx - b * cy) / det;
    double new_cy = (- c * cx + a * cy) / det;
    tx = new_cx - cx;
    ty = new_cy - cy;
  }

  // Resize width and height
  int resized_width = (int)(width * a);
  int resized_height = (int)(height * d);

  if (theta != 0) {
    resized_width = (int)(width);
    resized_height = (int)(height);
  }

  // other parameters
  int x_before, y_before;
  double dx, dy, wx, wy, w_sum;
  double val;
  int _x, _y;

  // output
  cv::Mat out = cv::Mat::zeros(resized_height, resized_width, CV_8UC3);

  // Affine transformation
  for (int y = 0; y < resized_height; y++){    
    for (int x = 0; x < resized_width; x++){

      // get original position x
      x_before = (int)((d * x - b * y) / det - tx);

      if ((x_before < 0) || (x_before >= width)){
        continue;
      }

      // get original position y
      y_before = (int)((-c * x + a * y) / det - ty);

      if ((y_before < 0) || (y_before >= height)){
        continue;
      }

      // assign pixel to new position
      for (int c = 0; c < channel; c++){
        out.at<cv::Vec3b>(y, x)[c] = img.at<cv::Vec3b>(y_before, x_before)[c];
      }
    }
  }

  return out;
}


int main(int argc, const char* argv[]){
  // read image
  cv::Mat img = cv::imread("imori.jpg", cv::IMREAD_COLOR);

  // affine
  cv::Mat out = affine(img, 1, 0, 0, 1, 0, 0, -30);

  //cv::imwrite("out.jpg", out);
  cv::imshow("answer", out);
  cv::waitKey(0);
  cv::destroyAllWindows();

  return 0;
}

输入:

Opencv 仿射变换旋转

输出1:

Opencv 仿射变换旋转

输出2:

Opencv 仿射变换旋转

Python教程

Java教程

Web教程

数据库教程

图形图像教程

大数据教程

开发工具教程

计算机教程