NumPy 副本和视图,副本(深拷贝)是一个数据的完整的拷贝,如果我们对副本进行修改,它不会影响到原始数据,物理内存不在同一位置。
视图(浅拷贝)是数据的一个别称或引用,通过该别称或引用亦便可访问、操作原有数据,但原有数据不会产生拷贝。如果我们对视图进行修改,它会影响到原始数据,物理内存在同一位置。
副本一般发生在:
- Python 序列的切片操作,调用deepCopy()函数。
- 调用 ndarray 的 copy() 函数产生一个副本。
视图一般发生在:
- 1、numpy 的切片操作返回原数据的视图。
- 2、调用 ndarray 的 view() 函数产生一个视图。
无复制
简单的赋值不会创建数组对象的副本。 相反,它使用原始数组的相同id()来访问它。 id()返回 Python 对象的通用标识符,类似于 C 中的指针。
此外,一个数组的任何变化都反映在另一个数组上。 例如,一个数组的形状改变也会改变另一个数组的形状。
输出结果为:
视图或浅拷贝
ndarray.view() 方会创建一个新的数组对象,该方法创建的新数组的维数更改不会更改原始数据的维数。
输出结果为:
使用切片创建视图修改数据会影响到原始数组:
输出结果为:
变量 a,b 都是 arr 的一部分视图,对视图的修改会直接反映到原数据中。但是我们观察 a,b 的 id,他们是不同的,也就是说,视图虽然指向原数据,但是他们和赋值引用还是有区别的。
副本或深拷贝
ndarray.copy() 函数创建一个副本,对副本数据进行修改,不会影响到原始数据,它们物理内存不在同一位置。
输出结果为: