NumPy.dot()与Python中’*’操作的区别
在Python中,如果我们有两个numpy数组,通常被称为一个向量。’*’运算符和numpy.dot()对它们的作用是不同的。特别是当你处理数据科学或竞争性编程问题时,知道这一点很重要。
*
操作
*
操作在数组元素上进行元素间的乘法。a[i][j]
处的元素与b[i][j]
相乘,这发生在数组的所有元素上。
示例:
Let the two 2D array are v1 and v2:-
v1 = [[1, 2], [3, 4]]
v2 = [[1, 2], [3, 4]]
Output:
[[1, 4]
[9, 16]]
From below picture it would be clear.
numpy.dot()
它进行正常的矩阵乘法。如果第一个数组的列数等于第二个数组的行数,那么只有numpy.dot()函数会被检查,否则会显示错误。
示例:
Let the two 2D array are v1 and v2:-
v1=[[1, 2], [3, 4]]
v2=[[1, 2], [3, 4]]
Than numpy.dot(v1, v2) gives output of :-
[[ 7 10]
[15 22]]
示例 1:
import numpy as np
# vector v1 of dimension (2, 2)
v1 = np.array([[1, 2], [1, 2]])
# vector v2 of dimension (2, 2)
v2 = np.array([[1, 2], [1, 2]])
print("vector multiplication")
print(np.dot(v1, v2))
print("\nElementwise multiplication of two vector")
print(v1 * v2)
**Output :**
vector multiplication
[[3 6]
[3 6]]
Elementwise multiplication of two vector
[[1 4]
[1 4]]
示例 2:
import numpy as np
v1 = np.array([[1, 2, 3], [1, 2, 3], [1, 2, 3]])
v2 = np.array([[[1, 2, 3], [1, 2, 3], [1, 2, 3]]])
print("vector multiplication")
print(np.dot(v1, v2))
print("\nElementwise multiplication of two vector")
print(v1 * v2)
输出 :
vector multiplication
[[ 6 12 18]
[ 6 12 18]
[ 6 12 18]]
Elementwise multiplication of two vector
[[1 4 9]
[1 4 9]
[1 4 9]]