Python Tensorflow bitwise.bitwise_xor()方法
Tensorflow bitwise.bitwise_xor()方法执行bitwise_xor操作,其结果将设置那些在a和b中不同的位。
语法: tf.bitwise.bitwise_xor(a, b, name=None)
参数
- a:这必须是一个张量。它应该是以下类型之一:int8, int16, int32, int64, uint8, uint16, uint32, uint64。
- b:这也应该是一个张量,类型与a相同。
- name: 这是一个可选的参数,这是操作的名称。
返回:它返回一个与a和b具有相同类型的张量。
让我们借助几个例子来看看这个概念。
示例 1:
# Importing the Tensorflow library
import tensorflow as tf
# A constant a and b
a = tf.constant(43, dtype = tf.int32)
b = tf.constant(5, dtype = tf.int32)
# Applying the bitwise_xor function
# storing the result in 'c'
c = tf.bitwise.bitwise_xor(a, b)
# Initiating a Tensorflow session
with tf.Session() as sess:
print("Input 1", a)
print(sess.run(a))
print("Input 2", b)
print(sess.run(b))
print("Output: ", c)
print(sess.run(c))
输出:
Input 1 Tensor("Const_36:0", shape=(), dtype=int32)
43
Input 2 Tensor("Const_37:0", shape=(), dtype=int32)
5
Output: Tensor("BitwiseXor_4:0", shape=(), dtype=int32)
46
示例 2:
# Importing the Tensorflow library
import tensorflow as tf
# A constant vector of size 2
a = tf.constant([10, 6], dtype = tf.int32)
b = tf.constant([12, 5], dtype = tf.int32)
# Applying the bitwise_xor function
# storing the result in 'c'
c = tf.bitwise.bitwise_xor(a, b)
# Initiating a Tensorflow session
with tf.Session() as sess:
print("Input 1", a)
print(sess.run(a))
print("Input 2", b)
print(sess.run(b))
print("Output: ", c)
print(sess.run(c))
输出:
Input 1 Tensor("Const_34:0", shape=(2, ), dtype=int32)
[10 6]
Input 2 Tensor("Const_35:0", shape=(2, ), dtype=int32)
[12 5]
Output: Tensor("BitwiseXor_3:0", shape=(2, ), dtype=int32)
[6 3]