Matplotlib.axes.axes.add_collection()
Matplotlib是Python中的一个库,它是NumPy库的数值-数学扩展。Axes包含了大多数图形元素:Axis、Tick、Line2D、Text、Polygon等,并设置坐标系。Axes的实例通过callbacks属性支持回调。
matplotlib.axes.axes.add_collection()函数
matplotlib库的Axes模块中的Axes.add_collection()函数用于向Axes的集合添加一个集合;返回集合。
Axes.add_collection(self, collection, autolim=True)
参数:该方法接受以下参数。
- collection:该参数是collection()函数生成的集合。
返回值:该方法返回集合。
下面的例子演示了matplotlib.axes.axes.add_collection()函数在matplotlib.axes中的作用:
示例1
# Implementation of matplotlib function
import matplotlib.pyplot as plt
from matplotlib.collections import EventCollection
import numpy as np
np.random.seed(19680801)
xvalue = np.random.random([2, 10])
xvalue1 = xvalue[0, :]
xvalue2 = xvalue[1, :]
xvalue1.sort()
xvalue2.sort()
yvalue1 = xvalue1 ** 4
yvalue2 = 1 - xvalue2 ** 6
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
ax.plot(xvalue1, yvalue1, color ='tab:blue')
ax.plot(xvalue2, yvalue2, color ='tab:green')
xresult1 = EventCollection(xvalue1, color ='tab:blue')
xresult2 = EventCollection(xvalue2, color ='tab:green')
yresult1 = EventCollection(yvalue1, color ='tab:blue',
orientation ='vertical')
yresult2 = EventCollection(yvalue2, color ='tab:green',
orientation ='vertical')
ax.add_collection(xresult1)
ax.add_collection(xresult2)
ax.add_collection(yresult1)
ax.add_collection(yresult2)
ax.set_xlim([0, 1])
ax.set_ylim([0, 1])
fig.suptitle('matplotlib.axes.Axes.add_collection() \
function Example\n\n', fontweight ="bold")
plt.show()
输出:
示例2
# Implementation of matplotlib function
import matplotlib.pyplot as plt
from matplotlib.collections import LineCollection
from matplotlib import colors as mcolors
import numpy as np
N = 50
x = np.arange(N)
ys = [i/(x + 1) for i in x]
fig, ax = plt.subplots()
ax.set_xlim(0, 20)
ax.set_ylim(0, 20)
line_segments = LineCollection([np.column_stack([x, y]) for y in ys],
linewidths =(0.5, 1, 1.5, 2),
linestyles ='dashed',
color ="# eeffdd")
line_segments.set_array(x**2)
ax.add_collection(line_segments)
fig.suptitle('matplotlib.axes.Axes.add_collection()\
function Example\n\n', fontweight ="bold")
plt.show()
输出: