创建一个 Pipeline 并从已创建的 DataFrame 中删除一行 – Python Pandas
使用 pdpipe 库的 ValDrop ()方法从已创建的 Pandas DataFrame 中删除一行。首先,使用它们各自的别名导入所需的 pdpipe 和 pandas 库 –
import pdpipe as pdp
import pandas as pd
让我们创建一个 DataFrame。这里,我们有两列 –
dataFrame = pd.DataFrame(
{
"Car": ['BMW', 'Lexus', 'Audi', 'Mustang', 'Bentley', 'Jaguar'],"Units": [100, 150, 110, 80, 110, 90]
}
)
现在,使用valdDrop()方法删除一行 –
dataFrame = pdp.ValDrop(['Jaguar'],'Car').apply(dataFrame)
更多Pandas文章,请阅读:Pandas教程
示例
以下是完整代码 –
import pdpipe as pdp
import pandas as pd
# function to check for excess units
def demo(x):
if x >= 100:
return "OverStock"
else:
return "UnderStock"
# Create DataFrame
dataFrame = pd.DataFrame(
{
"Car": ['BMW', 'Lexus', 'Audi', 'Mustang', 'Bentley', 'Jaguar'],"Units": [100, 150, 110, 80, 110, 90]
}
)
print("DataFrame ...\n",dataFrame)
# adding a new column "Stock" and its values based on an already created column "Units"
dataFrame['Stock'] = dataFrame['Units'].apply(demo)
print("\n DataFrame with a new column...\n",dataFrame)
# removing a row with pdp
dataFrame = pdp.ValDrop(['Jaguar'],'Car').apply(dataFrame)
print("\n DataFrame after removing a row...\n",dataFrame)
输出
这将产生以下输出 –
DataFrame ...
Car Units
0 BMW 100
1 Lexus 150
2 Audi 110
3 Mustang 80
4 Bentley 110
5 Jaguar 90
DataFrame with a new column...
Car Units Stock
0 BMW 100 OverStock
1 Lexus 150 OverStock
2 Audi 110 OverStock
3 Mustang 80 UnderStock
4 Bentley 110 OverStock
5 Jaguar 90 UnderStock
DataFrame after removing a value...
Car Units Stock
0 BMW 100 OverStock
1 Lexus 150 OverStock
2 Audi 110 OverStock
3 Mustang 80 UnderStock
4 Bentley 110 OverStock