Python Pandas 窗口函数
对于处理数值数据,Pandas提供了几种变体,如滚动、扩展和指数移动权重,用于窗口统计。其中包括 求和、均值、中位数、方差、协方差、相关系数 等等。
现在我们将学习如何在DataFrame对象上应用每一种函数。
.rolling() 函数
此函数可以应用于数据系列。指定 window=n 参数,并在其之上应用适当的统计函数。
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randn(10, 4),
index = pd.date_range('1/1/2000', periods=10),
columns = ['A', 'B', 'C', 'D'])
print df.rolling(window=3).mean()
它的 输出 如下:
A B C D
2000-01-01 NaN NaN NaN NaN
2000-01-02 NaN NaN NaN NaN
2000-01-03 0.434553 -0.667940 -1.051718 -0.826452
2000-01-04 0.628267 -0.047040 -0.287467 -0.161110
2000-01-05 0.398233 0.003517 0.099126 -0.405565
2000-01-06 0.641798 0.656184 -0.322728 0.428015
2000-01-07 0.188403 0.010913 -0.708645 0.160932
2000-01-08 0.188043 -0.253039 -0.818125 -0.108485
2000-01-09 0.682819 -0.606846 -0.178411 -0.404127
2000-01-10 0.688583 0.127786 0.513832 -1.067156
注意 − 由于窗口大小为3,因此前两个元素为null,从第三个元素开始,值将为前 n , n-1 和 n-2 元素的平均值。因此,我们还可以应用上面提到的各种函数。
.expanding()函数
此函数可以应用于一系列数据。指定 min_periods=n 参数并在其上应用适当的统计函数。
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randn(10, 4),
index = pd.date_range('1/1/2000', periods=10),
columns = ['A', 'B', 'C', 'D'])
print df.expanding(min_periods=3).mean()
它的 输出 如下−
A B C D
2000-01-01 NaN NaN NaN NaN
2000-01-02 NaN NaN NaN NaN
2000-01-03 0.434553 -0.667940 -1.051718 -0.826452
2000-01-04 0.743328 -0.198015 -0.852462 -0.262547
2000-01-05 0.614776 -0.205649 -0.583641 -0.303254
2000-01-06 0.538175 -0.005878 -0.687223 -0.199219
2000-01-07 0.505503 -0.108475 -0.790826 -0.081056
2000-01-08 0.454751 -0.223420 -0.671572 -0.230215
2000-01-09 0.586390 -0.206201 -0.517619 -0.267521
2000-01-10 0.560427 -0.037597 -0.399429 -0.376886
ewm()函数
ewm 函数应用于一系列的数据。您可以通过指定com、span或 halflife 参数,并在其上应用适当的统计函数来赋予数据指数权重。
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randn(10, 4),
index = pd.date_range('1/1/2000', periods=10),
columns = ['A', 'B', 'C', 'D'])
print df.ewm(com=0.5).mean()
它的 输出 如下所示:
A B C D
2000-01-01 1.088512 -0.650942 -2.547450 -0.566858
2000-01-02 0.865131 -0.453626 -1.137961 0.058747
2000-01-03 -0.132245 -0.807671 -0.308308 -1.491002
2000-01-04 1.084036 0.555444 -0.272119 0.480111
2000-01-05 0.425682 0.025511 0.239162 -0.153290
2000-01-06 0.245094 0.671373 -0.725025 0.163310
2000-01-07 0.288030 -0.259337 -1.183515 0.473191
2000-01-08 0.162317 -0.771884 -0.285564 -0.692001
2000-01-09 1.147156 -0.302900 0.380851 -0.607976
2000-01-10 0.600216 0.885614 0.569808 -1.110113
窗口函数主要用于通过平滑曲线来图形化地找出数据中的趋势。如果每天的数据有很大的变化并且有很多数据点可用,那么取样并绘制图表就是一种方法,应用窗口计算并绘制结果图表是另一种方法。通过这些方法,我们可以平滑曲线或趋势。