Python numpy.diag_indices()
Python numpy.diag_indices()函数返回下标,以访问最小维度为2的数组主对角线上的元素。以元组的形式返回索引。
访问数组的主对角线。
语法:
numpy.diag_indices(n, n_dim = 2)
参数 :
n :数组的大小,每个维度都需要有二个元素的索引。
n_dim : [int, optional]维数的数目。
返回 :
Indices(as tuples) to access diagonal elements.
代码 1 :
# Python Program illustrating
# working of diag_indices()
import numpy as geek
# Creates a 5 X 5 array and returns indices of
# main diagonal elements
d = geek.diag_indices(5)
print("Indices of diagonal elements as tuple : ")
print(d, "\n")
array = geek.arange(16).reshape(4,4)
print("Initial array : \n", array)
# Here we can manipulate diagonal elements
# by accessing the diagonal elements
d = geek.diag_indices(4)
array[d] = 25
print("\n New array : \n", array)
输出 :
Indices of diagonal elements as tuple :
(array([0, 1, 2, 3, 4]), array([0, 1, 2, 3, 4]))
Initial array :
[[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]
[12 13 14 15]]
New array :
[[25 1 2 3]
[ 4 25 6 7]
[ 8 9 25 11]
[12 13 14 25]]
代码2:操作2D数组
# Python Program illustrating
# working of diag_indices()
import numpy as geek
# Manipulating a 2D array
d = geek.diag_indices(3, 2)
array = geek.arange(12).reshape(4, 3)
array[d] = 111
print("Manipulated array : \n", array)
输出 :
Manipulated array :
[[111 1 2]
[ 3 111 5]
[ 6 7 111]
[ 9 10 11]]
代码3:操作3D数组
# Python Program illustrating
# working of diag_indices()
import numpy as geek
# Setting diagonal indices
d = geek.diag_indices(1, 2)
print("Diag indices : \n", d)
# Creating a 3D array with all ones
array = geek.ones((2, 2, 2), dtype=geek.int)
print("Initial array : \n", array)
# Manipulating a 3D array
array[d] = 0
print("New array : \n", array)
输出 :
Diag indices :
(array([0]), array([0]))
Initial array :
[[[1 1]
[1 1]]
[[1 1]
[1 1]]]
New array :
[[[0 0]
[1 1]]
[[1 1]
[1 1]]]