如何将Pytorch张量转换为Numpy数组
在这篇文章中,我们将把Pytorch张量转换为NumPy数组。
方法1:使用numpy().
语法: tensor_name.numpy()
例子1:将一维的张量转换为NumPy数组
# importing torch module
import torch
# import numpy module
import numpy
# create one dimensional tensor with
# float type elements
b = torch.tensor([10.12, 20.56, 30.00, 40.3, 50.4])
print(b)
# convert this into numpy array using
# numpy() method
b = b.numpy()
# display
b
输出:
tensor([10.1200, 20.5600, 30.0000, 40.3000, 50.4000])
array([10.12, 20.56, 30. , 40.3 , 50.4 ], dtype=float32)
例子2:将二维张量转换为NumPy数组
# importing torch module
import torch
# import numpy module
import numpy
# create two dimensional tensor with
# integer type elements
b = torch.tensor([[1, 2, 3, 4, 5], [3, 4, 5, 6, 7],
[4, 5, 6, 7, 8]])
print(b)
# convert this into numpy array using
# numpy() method
b = b.numpy()
# display
b
输出:
tensor([[1, 2, 3, 4, 5],
[3, 4, 5, 6, 7],
[4, 5, 6, 7, 8]])
array([[1, 2, 3, 4, 5],
[3, 4, 5, 6, 7],
[4, 5, 6, 7, 8]])
方法2:使用numpy.array()方法。
这也用于将张量转换为NumPy数组。
语法: numpy.array(tensor_name)
例子:将二维张量转换为NumPy数组
# importing torch module
import torch
# import numpy module
import numpy
# create two dimensional tensor with
# integer type elements
b = torch.tensor([[1, 2, 3, 4, 5], [3, 4, 5, 6, 7],
[4, 5, 6, 7, 8]])
print(b)
# convert this into numpy array using
# numpy.array() method
b = numpy.array(b)
# display
b
输出:
tensor([[1, 2, 3, 4, 5],
[3, 4, 5, 6, 7],
[4, 5, 6, 7, 8]])
array([[1, 2, 3, 4, 5],
[3, 4, 5, 6, 7],
[4, 5, 6, 7, 8]])