PyTorch 词嵌入
在这一章中,我们将了解著名的词嵌入模型 – word2vec。Word2vec模型用于通过一组相关模型生成词嵌入。Word2vec模型采用纯C代码实现,梯度需手动计算。
在PyTorch中实现word2vec模型的步骤如下所示 –
第1步
根据下述要求实现词嵌入中的库 –
第2步
使用名为word2vec的类来实现单词嵌入的Skip Gram模型。它包括以下类型的属性: emb_size, emb_dimension, u_embedding, v_embedding 。
第3步
实现主要方法,以正确显示词嵌入模型。
PyTorch 教程目录
- PyTorch 简介
- PyTorch 安装
- PyTorch 神经网络的数学基本构建模块
- PyTorch 神经网络基础
- PyTorch 机器学习的通用工作流程
- PyTorch 机器学习 vs. 深度学习
- PyTorch 实现第一个神经网络
- PyTorch 神经网络到功能块
- PyTorch 术语
- PyTorch 加载数据
- PyTorch 线性回归
- PyTorch 卷积神经网络
- PyTorch 循环神经网络
- PyTorch 数据集
- PyTorch 卷积神经网络介绍
- PyTorch 从头训练一个卷积神经网络
- PyTorch 卷积神经网络中的特征提取
- PyTorch 卷积神经网络的可视化
- PyTorch 序列处理与卷积
- PyTorch 词嵌入
- PyTorch 递归神经网络