PyTorch 卷积神经网络中的特征提取

PyTorch 卷积神经网络中的特征提取

卷积神经网络包括主要特征 提取 。遵循以下步骤来实现卷积神经网络的特征提取。

第1步

使用“PyTorch”导入相应的模型来创建特征提取模型。

import torch
import torch.nn as nn
from torchvision import models

第2步

创建一个可以根据需要调用的特征提取器类。

class Feature_extractor(nn.module):
   def forward(self, input):
      self.feature = input.clone()
      return input
new_net = nn.Sequential().cuda() # the new network
target_layers = [conv_1, conv_2, conv_4] # layers you want to extract`
i = 1
for layer in list(cnn):
   if isinstance(layer,nn.Conv2d):
      name = "conv_"+str(i)
      art_net.add_module(name,layer)
      if name in target_layers:
         new_net.add_module("extractor_"+str(i),Feature_extractor())
      i+=1
   if isinstance(layer,nn.ReLU):
      name = "relu_"+str(i)
      new_net.add_module(name,layer)
   if isinstance(layer,nn.MaxPool2d):
      name = "pool_"+str(i)
      new_net.add_module(name,layer)
new_net.forward(your_image)
print (new_net.extractor_3.feature)

PyTorch 教程目录

Python教程

Java教程

Web教程

数据库教程

图形图像教程

大数据教程

开发工具教程

计算机教程