PyTorch 卷积神经网络中的特征提取
卷积神经网络包括主要特征 提取 。遵循以下步骤来实现卷积神经网络的特征提取。
第1步
使用“PyTorch”导入相应的模型来创建特征提取模型。
import torch
import torch.nn as nn
from torchvision import models
第2步
创建一个可以根据需要调用的特征提取器类。
class Feature_extractor(nn.module):
def forward(self, input):
self.feature = input.clone()
return input
new_net = nn.Sequential().cuda() # the new network
target_layers = [conv_1, conv_2, conv_4] # layers you want to extract`
i = 1
for layer in list(cnn):
if isinstance(layer,nn.Conv2d):
name = "conv_"+str(i)
art_net.add_module(name,layer)
if name in target_layers:
new_net.add_module("extractor_"+str(i),Feature_extractor())
i+=1
if isinstance(layer,nn.ReLU):
name = "relu_"+str(i)
new_net.add_module(name,layer)
if isinstance(layer,nn.MaxPool2d):
name = "pool_"+str(i)
new_net.add_module(name,layer)
new_net.forward(your_image)
print (new_net.extractor_3.feature)
PyTorch 教程目录
- PyTorch 简介
- PyTorch 安装
- PyTorch 神经网络的数学基本构建模块
- PyTorch 神经网络基础
- PyTorch 机器学习的通用工作流程
- PyTorch 机器学习 vs. 深度学习
- PyTorch 实现第一个神经网络
- PyTorch 神经网络到功能块
- PyTorch 术语
- PyTorch 加载数据
- PyTorch 线性回归
- PyTorch 卷积神经网络
- PyTorch 循环神经网络
- PyTorch 数据集
- PyTorch 卷积神经网络介绍
- PyTorch 从头训练一个卷积神经网络
- PyTorch 卷积神经网络中的特征提取
- PyTorch 卷积神经网络的可视化
- PyTorch 序列处理与卷积
- PyTorch 词嵌入
- PyTorch 递归神经网络