如何在R数据帧中找到所有描述统计数据的统计摘要

如何在R数据帧中找到所有描述统计数据的统计摘要?

当我们找到R数据框的统计摘要时,通常只获取最小值,第一四分位数,中位数,均值,第三四分位数和最大值,但在描述统计量中,还有许多其他有用的度量,如方差,标准偏差,偏度,峰度等。因此,我们可以使用fBasics包的basicStats函数来实现此目的。

加载fBasics包 −

library(fBasics)

考虑base R中的mtcars数据−

阅读更多:Python 教程

示例

data(mtcars)
head(mtcars,20)

输出

       mpg cyl  disp  hp   drat    wt    qsec vs am gear carb
Mazda RX4            21.0  6 160.0 110 3.90 2.620 16.46  0  1    4    4
Mazda RX4 Wag    21.0  6 160.0 110 3.90 2.875 17.02  0  1   4    4
Datsun 710         22.8  4 108.0  93 3.85 2.320 18.61  1  1   4    1
Hornet 4 Drive   21.4  6 258.0 110 3.08 3.215 19.44  1  0   3    1
Hornet Sportabout 18.7  8 360.0 175 3.15 3.440 17.02  0  0   3    2
Valiant                18.1  6 225.0 105 2.76 3.460 20.22  1  0   3    1
Duster 360          14.3  8 360.0 245 3.21 3.570 15.84  0  0   3    4
Merc 240D           24.4  4 146.7  62 3.69 3.190 20.00  1  0   4    2
Merc 230            22.8  4 140.8  95 3.92 3.150 22.90  1  0   4    2
Merc 280            19.2  6 167.6 123 3.92 3.440 18.30  1  0   4    4
Merc 280C           17.8  6 167.6 123 3.92 3.440 18.90  1  0   4    4
Merc 450SE         16.4  8 275.8 180 3.07 4.070 17.40  0  0   3    3
Merc 450SL          17.3  8 275.8 180 3.07 3.730 17.60  0  0   3    3
Merc 450SLC         15.2  8 275.8 180 3.07 3.780 18.00  0  0   3    3
Cadillac Fleetwood 10.4  8 472.0 205 2.93 5.250 17.98  0  0   3    4
Lincoln Continental 10.4  8 460.0 215 3.00 5.424 17.82  0  0   3    4
Chrysler Imperial 14.7 8  440.0 230 3.23 5.345 17.42  0  0  3    4
Fiat 128                 32.4  4 78.7    66  4.08 2.200 19.47  1  1  4    1
Honda Civic          30.4  4 75.7    52  4.93 1.615 18.52  1  1  4    2
Toyota Corolla      33.9  4 71.1    65  4.22 1.835 19.90  1  1  4    1

查找mtcars数据集的统计摘要 –

>basicStats(mtcars)
                  mpg        cyl       disp          hp        drat
nobs        32.000000 32.000000 32.000000 32.000000 32.000000
NAs         0.000000    0.000000 0.000000   0.000000   0.000000
Minimum 10.400000   4.000000  71.100000 52.000000 2.760000
Maximum 33.900000   8.000000  472.000000 335.000000 4.930000
1.Quartile 15.425000  4.000000  120.825000 96.500000 3.080000
3.Quartile 22.800000  8.000000  326.000000 180.000000 3.920000
Mean      20.090625  6.187500  230.721875 146.687500 3.596563
Median    19.200000  6.000000  196.300000 123.000000 3.695000
Sum       642.900000 198.000000 7383.100000 4694.000000 115.090000
SE Mean  1.065424  0.315709  21.909473 12.120317 0.094519 LCL
Mean      17.917679  5.543607  186.037211 121.967950 3.403790 UCL
Mean      22.263571  6.831393  275.406539 171.407050 3.789335
Variance  36.324103 3.189516  15360.799829 4700.866935 0.285881
Stdev      6.026948  1.785922  123.938694 68.562868 0.534679
Skewness  0.610655  -0.174612 0.381657 0.726024 0.265904
Kurtosis  -0.372766 -1.762120 -1.207212 -0.135551 -0.714701
          wt     qsec           vs     am        gea      r carb
nobs     32.000000 32.000000 32.000000 32.000000 32.000000 32.000000
NAs     0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
Minimum  1.513000 14.500000 0.000000 0.000000 3.000000 1.000000
Maximum  5.424000 22.900000 1.000000 1.000000 5.000000 8.000000 1.
Quartile  2.581250 16.892500 0.000000 0.000000 3.000000 2.000000 3.
Quartile  3.610000 18.900000 1.000000 1.000000 4.000000 4.000000
Mean    3.217250 17.848750 0.437500 0.406250 3.687500 2.812500
Median 3.325000 17.710000 0.000000 0.000000 4.000000 2.000000
Sum 102.952000 571.160000 14.000000 13.000000 118.000000 90.000000
SE Mean 0.172968 0.315890 0.089098 0.088210 0.130427 0.285530
LCL Mean 2.864478 17.204488 0.255783 0.226345 3.421493 2.230158
UCL Mean 3.570022 18.493012 0.619217 0.586155 3.953507 3.394842
Variance 0.957379 3.193166 0.254032 0.248992 0.544355 2.608871
Stdev 0.978457 1.786943 0.504016 0.498991 0.737804 1.615200
Skewness 0.423146 0.369045 0.240258 0.364016 0.528854 1.050874
Kurtosis -0.022711 0.335114 -2.001938 -1.924741 -1.069751 1.257043

让我们再来看两个在基础R中使用的数据(trees data和pressure data)的例子。

trees data的例子−

例子

data(trees)
head(trees,20)

输出

  Girth Height Volume
1  8.3   70     10.3
2  8.6   65     10.3
3  8.8   63     10.2
4  10.5  72     16.4
5  10.7  81     18.8
6  10.8  83     19.7
7  11.0  66     15.6
8  11.0  75     18.2
9  11.1  80     22.6
10 11.2  75     19.9
11 11.3  79     24.2
12 11.4  76     21.0
13 11.4  76     21.4
14 11.7  69     21.3
15 12.0  75     19.1
16 12.9  74     22.2
17 12.9  85     33.8
18 13.3  86     27.4
19 13.7  71     25.7
20 13.8  64     24.9
>basicStats(trees)
Girth Height Volume
nobs 31.000000 31.000000 31.000000 NAs 0.000000 0.000000 0.000000
Minimum 8.300000 63.000000 10.200000 Maximum 20.600000 87.000000 77.000000 1. Quartile 11.050000 72.000000 19.400000 3.
Quartile 15.250000 80.000000 37.300000 Mean 13.248387 76.000000 30.170968 Median 12.900000 76.000000 24.200000 Sum 410.700000 2356.000000 935.300000 SE Mean 0.563626 1.144411 2.952324
LCL Mean 12.097309 73.662800 24.141517 UCL Mean 14.399466 78.337200 36.200418 Variance 9.847914 40.600000 270.202796 Stdev 3.138139 6.371813 16.437846 Skewness 0.501056 -0.356877 1.013274 Kurtosis -0.710941 -0.723368 0.246039

pressure data的例子−

例子

data(pressure)
head(pressure,20)

输出

   temperature   pressure
1     0            0.0002
2     20           0.0012
3     40           0.0060
4     60           0.0300
5     80           0.0900
6    100           0.2700
7    120           0.7500
8    140           1.8500
9    160           4.2000
10   180           8.8000
11   200          17.3000
12   220          32.1000
13   240          57.0000
14  260           96.0000
15  280          157.0000
16  300          247.0000
17  320          376.0000
18  340          558.0000
19  360          806.0000
basicStats(pressure)
temperature pressure
nobs 19.000000 19.000000
NAs 0.000000 0.000000
Minimum 0.000000 0.000200
Maximum 360.000000 806.000000
1. Quartile 90.000000 0.180000
3. Quartile 270.000000 126.500000
Mean 180.000000 124.336705
Median 180.000000 8.800000
Sum 3420.000000 2362.397400
SE Mean 25.819889 51.531945
LCL Mean 125.754426 16.072107
UCL Mean 234.245574 232.601304 Variance 12666.666667 50455.285428 Stdev 112.546287 224.622540
Skewness 0.000000 1.835588
Kurtosis -1.390471 2.334429

Python教程

Java教程

Web教程

数据库教程

图形图像教程

大数据教程

开发工具教程

计算机教程