Python Pandas – 使用DatetimeIndex创建DataFrame,但覆盖结果列的名称

Python Pandas – 使用DatetimeIndex创建DataFrame,但覆盖结果列的名称

要创建一个DataFrame,可以使用 datetimeindex.to_frame() 来从DatetimeIndex创建。我们已将名称参数设为覆盖 结果列 的名称。

首先,导入所需的库:

import pandas as pd

创建周期为5,频率为S(秒)的DatetimeIndex:

datetimeindex = pd.date_range('2021-10-18 07:20:32.261811624', periods=5,
tz='Australia/Adelaide', freq='40S')

显示DateTimeIndex:

print("DateTimeIndex...\n", datetimeindex)

使用”False”参数可以在返回的DataFrame中不设置原始索引。要覆盖结果列的名称,我们使用了”name”参数:

print("\nDateTimeIndex to DataFrame...\n",
datetimeindex.to_frame(index=False, name = 'DateTimeData'))

更多Pandas相关文章,请阅读:Pandas 教程

示例

以下是代码:

import pandas as pd

# DatetimeIndex with period 5 and frequency as S i.e. seconds
# timezone is Australia/Adelaide
datetimeindex = pd.date_range('2021-10-18 07:20:32.261811624', periods=5,
tz='Australia/Adelaide', freq='40S')

# display DateTimeIndex
print("DateTimeIndex...\n", datetimeindex)

# display DateTimeIndex frequency
print("\nDateTimeIndex frequency...\n", datetimeindex.freq)

# Create a DataFrame from DateTimeIndex
# The original index isn't set in the returned DataFrame using the 'False' parameter
# To override the name of the resulting column, we have used the 'name' parameter
print("\nDateTimeIndex to DataFrame...\n",
datetimeindex.to_frame(index=False, name = 'DateTimeData'))

输出

这将生成以下输出:

DateTimeIndex...
DatetimeIndex(['2021-10-18 07:20:32.261811624+10:30',
'2021-10-18 07:21:12.261811624+10:30',
'2021-10-18 07:21:52.261811624+10:30',
'2021-10-18 07:22:32.261811624+10:30',
'2021-10-18 07:23:12.261811624+10:30'],
dtype='datetime64[ns, Australia/Adelaide]', freq='40S')

DateTimeIndex frequency...
<40 * 秒>

DateTimeIndex to DataFrame...
DateTimeData
0 2021-10-18 07:20:32.261811624+10:30
1 2021-10-18 07:21:12.261811624+10:30
2 2021-10-18 07:21:52.261811624+10:30
3 2021-10-18 07:22:32.261811624+10:30
4 2021-10-18 07:23:12.261811624+10:30

Python教程

Java教程

Web教程

数据库教程

图形图像教程

大数据教程

开发工具教程

计算机教程