根据条件选择pandas DataFrame中的行

根据条件选择pandas DataFrame中的行

让我们看看如何在Pandas DataFrame中根据一些条件来选择行。

使用’>’, ‘=’, ‘=’, ‘<=’, ‘!=’操作符根据特定列的值选择行

代码#1 :使用基本方法从给定的数据框架中选择所有 “百分比 “大于80的行。

# importing pandas
import pandas as pd
  
record = {
  
 'Name': ['Ankit', 'Amit', 'Aishwarya', 'Priyanka', 'Priya', 'Shaurya' ],
 'Age': [21, 19, 20, 18, 17, 21],
 'Stream': ['Math', 'Commerce', 'Science', 'Math', 'Math', 'Science'],
 'Percentage': [88, 92, 95, 70, 65, 78] }
  
# create a dataframe
dataframe = pd.DataFrame(record, columns = ['Name', 'Age', 'Stream', 'Percentage'])
  
print("Given Dataframe :\n", dataframe) 
  
# selecting rows based on condition
rslt_df = dataframe[dataframe['Percentage'] > 80]
  
print('\nResult dataframe :\n', rslt_df)
Python

输出 :

根据条件选择pandas DataFrame中的行

代码#2 :从给定的数据框架中选择所有’百分比’大于80的行,使用loc[] 。

# importing pandas
import pandas as pd
  
record = {
  'Name': ['Ankit', 'Amit', 'Aishwarya', 'Priyanka', 'Priya', 'Shaurya' ],
  'Age': [21, 19, 20, 18, 17, 21],
  'Stream': ['Math', 'Commerce', 'Science', 'Math', 'Math', 'Science'],
  'Percentage': [88, 92, 95, 70, 65, 78]}
  
# create a dataframe
dataframe = pd.DataFrame(record, columns = ['Name', 'Age', 'Stream', 'Percentage'])
  
print("Given Dataframe :\n", dataframe) 
  
# selecting rows based on condition
rslt_df = dataframe.loc[dataframe['Percentage'] > 80]
  
print('\nResult dataframe :\n', rslt_df)
Python

输出 :

根据条件选择pandas DataFrame中的行

代码#3 :从给定的数据框架中选择所有’百分比’不等于95的行,使用loc[] 。

# importing pandas
import pandas as pd
  
record = {
  'Name': ['Ankit', 'Amit', 'Aishwarya', 'Priyanka', 'Priya', 'Shaurya' ],
  'Age': [21, 19, 20, 18, 17, 21],
  'Stream': ['Math', 'Commerce', 'Science', 'Math', 'Math', 'Science'],
  'Percentage': [88, 92, 95, 70, 65, 78]}
  
# create a dataframe
dataframe = pd.DataFrame(record, columns = ['Name', 'Age', 'Stream', 'Percentage'])
  
print("Given Dataframe :\n", dataframe) 
  
# selecting rows based on condition
rslt_df = dataframe.loc[dataframe['Percentage'] != 95]
  
print('\nResult dataframe :\n', rslt_df)
Python

输出 :

根据条件选择pandas DataFrame中的行

使用数据框架的isin()方法选择那些列值存在于列表中的行

代码#1 :使用基本方法从给定的数据框架中选择所有的行,其中’Stream’出现在选项列表中。

# importing pandas
import pandas as pd
  
record = {
  'Name': ['Ankit', 'Amit', 'Aishwarya', 'Priyanka', 'Priya', 'Shaurya' ],
  'Age': [21, 19, 20, 18, 17, 21],
  'Stream': ['Math', 'Commerce', 'Science', 'Math', 'Math', 'Science'],
  'Percentage': [88, 92, 95, 70, 65, 78]}
  
# create a dataframe
dataframe = pd.DataFrame(record, columns = ['Name', 'Age', 'Stream', 'Percentage'])
  
print("Given Dataframe :\n", dataframe) 
  
options = ['Math', 'Commerce']
  
# selecting rows based on condition
rslt_df = dataframe[dataframe['Stream'].isin(options)]
  
print('\nResult dataframe :\n', rslt_df)
Python

输出 :

根据条件选择pandas DataFrame中的行

代码#2 : 使用loc[] 从给定的数据框架中选择所有的行,其中’Stream’出现在选项列表中。

# importing pandas
import pandas as pd
  
record = {
  'Name': ['Ankit', 'Amit', 'Aishwarya', 'Priyanka', 'Priya', 'Shaurya' ],
  'Age': [21, 19, 20, 18, 17, 21],
  'Stream': ['Math', 'Commerce', 'Science', 'Math', 'Math', 'Science'],
  'Percentage': [88, 92, 95, 70, 65, 78]}
  
# create a dataframe
dataframe = pd.DataFrame(record, columns = ['Name', 'Age', 'Stream', 'Percentage'])
  
print("Given Dataframe :\n", dataframe) 
  
options = ['Math', 'Commerce']
  
# selecting rows based on condition
rslt_df = dataframe.loc[dataframe['Stream'].isin(options)]
  
print('\nResult dataframe :\n', rslt_df)
Python

输出 :

根据条件选择pandas DataFrame中的行

代码#3 :使用.loc[]从给定的数据框架中选择所有的行,其中’Stream’不在选项列表中。

# importing pandas
import pandas as pd
  
record = {
  'Name': ['Ankit', 'Amit', 'Aishwarya', 'Priyanka', 'Priya', 'Shaurya' ],
  'Age': [21, 19, 20, 18, 17, 21],
  'Stream': ['Math', 'Commerce', 'Science', 'Math', 'Math', 'Science'],
  'Percentage': [88, 92, 95, 70, 65, 78]}
  
# create a dataframe
dataframe = pd.DataFrame(record, columns = ['Name', 'Age', 'Stream', 'Percentage'])
  
print("Given Dataframe :\n", dataframe) 
  
options = ['Math', 'Science']
  
# selecting rows based on condition
rslt_df = dataframe.loc[~dataframe['Stream'].isin(options)]
  
print('\nresult dataframe :\n', rslt_df)
Python

输出 :

根据条件选择pandas DataFrame中的行

使用’&’操作符根据多列条件选择行

代码#1 :使用基本方法从给定的数据框架中选择所有行,其中’Age’等于21,’Stream’出现在选项列表中。

# importing pandas
import pandas as pd
  
record = {
  'Name': ['Ankit', 'Amit', 'Aishwarya', 'Priyanka', 'Priya', 'Shaurya' ],
  'Age': [21, 19, 20, 18, 17, 21],
  'Stream': ['Math', 'Commerce', 'Science', 'Math', 'Math', 'Science'],
  'Percentage': [88, 92, 95, 70, 65, 78]}
  
# create a dataframe
dataframe = pd.DataFrame(record, columns = ['Name', 'Age', 'Stream', 'Percentage'])
  
print("Given Dataframe :\n", dataframe) 
  
options = ['Math', 'Science']
  
# selecting rows based on condition
rslt_df = dataframe[(dataframe['Age'] == 21) &
          dataframe['Stream'].isin(options)]
  
print('\nResult dataframe :\n', rslt_df)
Python

输出 :

根据条件选择pandas DataFrame中的行

代码#2 :从给定的数据框架中选择所有行,其中’Age’等于21并且’Stream’出现在选项列表中,使用.loc[] 。

# importing pandas
import pandas as pd
  
record = {
  'Name': ['Ankit', 'Amit', 'Aishwarya', 'Priyanka', 'Priya', 'Shaurya' ],
  'Age': [21, 19, 20, 18, 17, 21],
  'Stream': ['Math', 'Commerce', 'Science', 'Math', 'Math', 'Science'],
  'Percentage': [88, 92, 95, 70, 65, 78]}
  
# create a dataframe
dataframe = pd.DataFrame(record, columns = ['Name', 'Age', 'Stream', 'Percentage'])
  
print("Given Dataframe :\n", dataframe) 
  
options = ['Math', 'Science']
  
# selecting rows based on condition
rslt_df = dataframe.loc[(dataframe['Age'] == 21) &
              dataframe['Stream'].isin(options)]
  
print('\nResult dataframe :\n', rslt_df)
Python

输出 :

根据条件选择pandas DataFrame中的行

Python教程

Java教程

Web教程

数据库教程

图形图像教程

大数据教程

开发工具教程

计算机教程

登录

注册