如何在Pandas数据框架中获得行/索引名称
在分析实际数据集时,这些数据集的大小往往非常巨大,我们可能需要获得行或索引名称,以便执行某些操作。
让我们来讨论一下如何在Pandas数据框架中获取行名。
首先,让我们用nba.csv创建一个简单的数据框架
# Import pandas package
import pandas as pd
# making data frame
data = pd.read_csv("https://media.geeksforgeeks.org/wp-content/uploads/nba.csv")
# calling head() method
# storing in new variable
data_top = data.head(10)
# display
data_top
现在,让我们尝试从上述数据集中获取行名。
方法#1:简单地迭代索引
# Import pandas package
import pandas as pd
# making data frame
data = pd.read_csv("nba.csv")
# calling head() method
# storing in new variable
data_top = data.head()
# iterating the columns
for row in data_top.index:
print(row, end = " ")
输出:
0 1 2 3 4 5 6 7 8 9
方法#2:使用带有数据框架对象的行
# Import pandas package
import pandas as pd
# making data frame
data = pd.read_csv("nba.csv")
# calling head() method
# storing in new variable
data_top = data.head()
# list(data_top) or
list(data_top.index)
输出:
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
方法#3: index.values方法返回一个数组的索引。
# Import pandas package
import pandas as pd
# making data frame
data = pd.read_csv("nba.csv")
# calling head() method
# storing in new variable
data_top = data.head()
list(data_top.index.values)
输出:
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
方法四:使用tolist()方法,用给定的索引列表的值。
# Import pandas package
import pandas as pd
# making data frame
data = pd.read_csv("nba.csv")
# calling head() method
# storing in new variable
data_top = data.head()
list(data_top.index.values.tolist())
输出:
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
方法#5:计算数据框架中的行数
由于我们使用head()方法只加载了数据框架最上面的10行,让我们先验证一下总的行数。
# iterate the indices and print each one
for row in data.index:
print(row, end= " ")
输出:
现在,让我们打印索引的总计数。
# Import pandas package
import pandas as pd
# making data frame
data = pd.read_csv("nba.csv")
row_count = 0
# iterating over indices
for col in data.index:
row_count += 1
# print the row count
print(row_count)
输出:
458