使用Excel文件创建一个数据框架

使用Excel文件创建一个数据框架

让我们看看如何使用Pandas.Net将excel文件读取到Pandas数据框对象。
代码#1 :使用pandas的read_excel()方法读取一个excel文件

# import pandas lib as pd
import pandas as pd
 
# read by default 1st sheet of an excel file
dataframe1 = pd.read_excel('SampleWork.xlsx')
 
print(dataframe1)

输出 :

        Name  Age    Stream  Percentage
0      Ankit   18      Math          95
1      Rahul   19   Science          90
2    Shaurya   20  Commerce          85
3  Aishwarya   18      Math          80
4   Priyanka   19   Science          75

代码#2 :使用read_excel()方法的’sheet_name’读取特定表单。

# import pandas lib as pd
import pandas as pd
 
# read 2nd sheet of an excel file
dataframe2 = pd.read_excel('SampleWork.xlsx', sheet_name = 1)
 
print(dataframe2)

输出 :

       Name  Age    Stream  Percentage
0     Priya   18      Math          95
1  shivangi   19   Science          90
2      Jeet   20  Commerce          85
3    Ananya   18      Math          80
4   Swapnil   19   Science          75

代码#3 :使用read_excel()方法的’usecols’参数读取特定列。

# import pandas lib as pd
import pandas as pd
 
require_cols = [0, 3]
 
# only read specific columns from an excel file
required_df = pd.read_excel('SampleWork.xlsx', usecols = require_cols)
 
print(required_df)

输出 :

        Name  Percentage
0      Ankit          95
1      Rahul          90
2    Shaurya          85
3  Aishwarya          80
4   Priyanka          75

代码#4 :使用read_excel()方法的’na_values’参数处理缺失数据。

# import pandas lib as pd
import pandas as pd
 
# Handling missing values of 3rd sheet of an excel file.
dataframe = pd.read_excel('SampleWork.xlsx', na_values = "Missing",
                                                    sheet_name = 2)
 
print(dataframe)

输出 :

       Name  Age   Stream  Percentage
0     Priya   18     Math          95
1  shivangi   19  Science          90
2      Jeet   20      NaN          85
3    Ananya   18     Math          80
4   Swapnil   19  Science          75

**代码#5 :*当使用read_excel()方法的’skiprows’参数读取Excel文件时跳过起始行。

# import pandas lib as pd
import pandas as pd
 
# read 2nd sheet of an excel file after
# skipping starting two rows
df = pd.read_excel('SampleWork.xlsx', sheet_name = 1, skiprows = 2)
 
print(df)

输出 :

  shivangi  19   Science  90
0     Jeet  20  Commerce  85
1   Ananya  18      Math  80
2  Swapnil  19   Science  75

代码#6 : 使用read_excel()方法的’header’参数,将标题设置为任何一行,并从该行开始读取。

# import pandas lib as pd
import pandas as pd
 
# setting the 3rd row as header.
df = pd.read_excel('SampleWork.xlsx', sheet_name = 1, header = 2)
 
print(df)

输出 :

  shivangi  19   Science  90
0     Jeet  20  Commerce  85
1   Ananya  18      Math  80
2  Swapnil  19   Science  75

代码#7 :使用read_excel()方法的’sheet_name’参数读取多个Excel表。

# import pandas lib as pd
import pandas as pd
 
# read both 1st and 2nd sheet.
df = pd.read_excel('SampleWork.xlsx', na_values = "Missing",
                                        sheet_name =[0, 1])
 
print(df)

输出 :

OrderedDict([(0,         Name  Age    Stream  Percentage
0      Ankit   18      Math          95
1      Rahul   19   Science          90
2    Shaurya   20  Commerce          85
3  Aishwarya   18      Math          80
4   Priyanka   19   Science          75),

(1,        Name  Age    Stream  Percentage
0     Priya   18      Math          95
1  shivangi   19   Science          90
2      Jeet   20  Commerce          85
3    Ananya   18      Math          80
4   Swapnil   19   Science          75)])

代码#8 :使用read_excel()方法的’sheet_name’参数一起读取excel文件的所有sheet。

# import pandas lib as pd
import pandas as pd
 
# read all sheets together.
all_sheets_df = pd.read_excel('SampleWork.xlsx', na_values = "Missing",
                                                     sheet_name = None)
 
print(all_sheets_df)

输出 :

OrderedDict([('Sheet1',         Name  Age    Stream  Percentage
0      Ankit   18      Math          95
1      Rahul   19   Science          90
2    Shaurya   20  Commerce          85
3  Aishwarya   18      Math          80
4   Priyanka   19   Science          75),

('Sheet2',        Name  Age    Stream  Percentage
0     Priya   18      Math          95
1  shivangi   19   Science          90
2      Jeet   20  Commerce          85
3    Ananya   18      Math          80
4   Swapnil   19   Science          75), 

('Sheet3',        Name  Age   Stream  Percentage
0     Priya   18     Math          95
1  shivangi   19  Science          90
2      Jeet   20      NaN          85
3    Ananya   18     Math          80
4   Swapnil   19  Science          75)])

Python教程

Java教程

Web教程

数据库教程

图形图像教程

大数据教程

开发工具教程

计算机教程