从列表中创建一个Pandas数据框架
Python是一种进行数据分析的伟大语言,主要是因为以数据为中心的Python包的奇妙生态系统。Pandas就是这些包中的一个,它使导入和分析数据变得更加容易。
创建Pandas Dataframe可以通过多种方式实现。让我们看看如何从列表中创建一个Pandas数据框架。
代码#1:基本例子
# import pandas as pd
import pandas as pd
# list of strings
lst = ['Geeks', 'For', 'Geeks', 'is',
'portal', 'for', 'Geeks']
# Calling DataFrame constructor on list
df = pd.DataFrame(lst)
df
输出:
代码#2:数据框架,使用带有索引和列名的列表
# import pandas as pd
import pandas as pd
# list of strings
lst = ['Geeks', 'For', 'Geeks', 'is', 'portal', 'for', 'Geeks']
# Calling DataFrame constructor on list
# with indices and columns specified
df = pd.DataFrame(lst, index =['a', 'b', 'c', 'd', 'e', 'f', 'g'],
columns =['Names'])
df
输出:
代码#3:使用zip()对两个列表进行压缩
# import pandas as pd
import pandas as pd
# list of strings
lst = ['Geeks', 'For', 'Geeks', 'is', 'portal', 'for', 'Geeks']
# list of int
lst2 = [11, 22, 33, 44, 55, 66, 77]
# Calling DataFrame constructor after zipping
# both lists, with columns specified
df = pd.DataFrame(list(zip(lst, lst2)),
columns =['Name', 'val'])
df
输出:
代码 #4: 使用多维列表创建DataFrame
# import pandas as pd
import pandas as pd
# List1
lst = [['tom', 25], ['krish', 30],
['nick', 26], ['juli', 22]]
df = pd.DataFrame(lst, columns =['Name', 'Age'])
df
输出:
代码#5:使用多维列表,并指定列名和dtype。
# import pandas as pd
import pandas as pd
# List1
lst = [['tom', 'reacher', 25], ['krish', 'pete', 30],
['nick', 'wilson', 26], ['juli', 'williams', 22]]
df = pd.DataFrame(lst, columns =['FName', 'LName', 'Age'], dtype = float)
df
输出:
代码#6:使用字典中的列表来创建数据框架
# importing pandas as pd
import pandas as pd
# list of name, degree, score
nme = ["aparna", "pankaj", "sudhir", "Geeku"]
deg = ["MBA", "BCA", "M.Tech", "MBA"]
scr = [90, 40, 80, 98]
# dictionary of lists
dict = {'name': nme, 'degree': deg, 'score': scr}
df = pd.DataFrame(dict)
df
输出: