Python – tensorflow.math.xlog1py()
TensorFlow是谷歌设计的开源Python库,用于开发机器学习模型和深度学习神经网络。
xlog1py()是用来计算元素明智的x * log1p(y)。
语法: tensorflow.math.xlog1py(x, y, name)
参数:
- x:它是一个张量。允许的d类型是bfloat16, half, float32, float64, complex64, complex128。
- y:它是一个张量。下面的dtypes是bfloat16, half, float32, float64, complex64, complex128。
- name(可选):它定义了该操作的名称。
返回:它返回一个张量。
示例 1:
# importing the library
import tensorflow as tf
# Initializing the input tensor
a = tf.constant([ -5, -7, 2, 0, 7], dtype = tf.float64)
b = tf.constant([ 1, 3, 9, 4, 7], dtype = tf.float64)
# Printing the input tensor
print('a: ', a)
print('b: ', b)
# Calculating result
res = tf.math.xlog1py(a, b)
# Printing the result
print('Result: ', res)
输出:
a: tf.Tensor([-5. -7. 2. 0. 7.], shape=(5, ), dtype=float64)
b: tf.Tensor([1. 3. 9. 4. 7.], shape=(5, ), dtype=float64)
Result: tf.Tensor([-3.4657359 -9.70406053 4.60517019 0. 14.55609079], shape=(5, ), dtype=float64)
示例 2:
# importing the library
import tensorflow as tf
import numpy as np
# Initializing the input tensor
a = tf.constant([ -5 + 2j, -7-5j, 2 + 2j, 5-3j, 7 + 6j], dtype = tf.complex128)
b = tf.constant([ 0 + 0j, 3-1j, 9 + 5j, 4-3j, -6-8j], dtype = tf.complex128)
# Printing the input tensor
print('a: ', a)
print('b: ', b)
# Calculating result
res = tf.math.xlog1py(a, b)
# Printing the result
print('Result: ', res)
输出:
a: tf.Tensor([-5.+2.j -7.-5.j 2.+2.j 5.-3.j 7.+6.j], shape=(5, ), dtype=complex128)
b: tf.Tensor([ 0.+0.j 3.-1.j 9.+5.j 4.-3.j -6.-8.j], shape=(5, ), dtype=complex128)
Result: tf.Tensor(
[ -0. +0.j -11.14114002-5.36818272j
3.90101852+5.75560896j 7.19464281-7.99163829j
28.48660115-1.43986039j], shape=(5, ), dtype=complex128)