Pandas 描述性统计

Pandas 描述性统计,有很多方法用来计算DataFrame的描述性统计信息和其他相关操作。 其中大多数是sum()mean()等聚合函数,但其中一些,如sumsum(),产生一个相同大小的对象。 一般来说,这些方法采用轴参数,就像ndarray.{sum,std,...},但轴可以通过名称或整数来指定。

  • DataFrame – “index”(axis=0,default),”columns”(axis=1)

下面创建一个数据帧(DataFrame),并使用此对象进行演示本章中所有操作。

import pandas as pd
import numpy as np

# Create a Dictionary of series
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Minsu','Jack',
   'Lee','David','Gasper','Betina','Andres']),
   'Age':pd.Series([25,26,25,23,30,29,23,34,40,30,51,46]),
   'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8,3.78,2.98,4.80,4.10,3.65])}

# Create a DataFrame
df = pd.DataFrame(d)
print (df)

执行结果如下:

    Age    Name  Rating
0    25     Tom    4.23
1    26   James    3.24
2    25   Ricky    3.98
3    23     Vin    2.56
4    30   Steve    3.20
5    29   Minsu    4.60
6    23    Jack    3.80
7    34     Lee    3.78
8    40   David    2.98
9    30  Gasper    4.80
10   51  Betina    4.10
11   46  Andres    3.65

函数和说明

下面来了解Python Pandas中描述性统计信息的函数,下表列出了重要函数
Pandas 描述性统计

注 – 由于DataFrame是异构数据结构,泛型操作并不适用于所有函数。

  • 类似于:sum()cumsum()函数能与数字和字符(或)字符串数据元素一起工作,不会产生任何错误。字符聚合从来都比较少被使用,虽然这些函数不会引发任何异常。
  • 由于这样的操作无法执行,因此,当DataFrame包含字符或字符串数据时,像abs()cumprod()这样的函数会抛出异常。

sum() 示例

返回所请求轴的值的总和,默认情况下axis=0

import pandas as pd
import numpy as np

#Create a Dictionary of series
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Minsu','Jack',
   'Lee','David','Gasper','Betina','Andres']),
   'Age':pd.Series([25,26,25,23,30,29,23,34,40,30,51,46]),
   'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8,3.78,2.98,4.80,4.10,3.65])}

#Create a DataFrame
df = pd.DataFrame(d)
print (df.sum())

执行结果如下:

Age                                                     382
Name      TomJamesRickyVinSteveMinsuJackLeeDavidGasperBe...
Rating                                                44.92
dtype: object

axis=1示例
此语法将给出如下所示的输出,参考示例代码如下:

import pandas as pd
import numpy as np

#Create a Dictionary of series
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Minsu','Jack',
   'Lee','David','Gasper','Betina','Andres']),
   'Age':pd.Series([25,26,25,23,30,29,23,34,40,30,51,46]),
   'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8,3.78,2.98,4.80,4.10,3.65])}

#Create a DataFrame
df = pd.DataFrame(d)
print (df.sum(1))

执行结果如下:

0     29.23
1     29.24
2     28.98
3     25.56
4     33.20
5     33.60
6     26.80
7     37.78
8     42.98
9     34.80
10    55.10
11    49.65
dtype: float64

mean() 示例

返回平均值,参考示例代码如下:

import pandas as pd
import numpy as np

#Create a Dictionary of series
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Minsu','Jack',
   'Lee','David','Gasper','Betina','Andres']),
   'Age':pd.Series([25,26,25,23,30,29,23,34,40,30,51,46]),
   'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8,3.78,2.98,4.80,4.10,3.65])}

#Create a DataFrame
df = pd.DataFrame(d)
print (df.mean())

执行结果如下:

Age       31.833333
Rating     3.743333
dtype: float64

std() 示例

返回数值列的Bressel标准偏差,参考示例代码如下:

import pandas as pd
import numpy as np

#Create a Dictionary of series
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Minsu','Jack',
   'Lee','David','Gasper','Betina','Andres']),
   'Age':pd.Series([25,26,25,23,30,29,23,34,40,30,51,46]),
   'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8,3.78,2.98,4.80,4.10,3.65])}

#Create a DataFrame
df = pd.DataFrame(d)
print (df.std())

执行结果如下:

Age       9.232682
Rating    0.661628
dtype: float64

describe() 示例

describe()函数是用来计算有关 DataFrame 列的统计信息的摘要。

import pandas as pd
import numpy as np

#Create a Dictionary of series
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Minsu','Jack',
   'Lee','David','Gasper','Betina','Andres']),
   'Age':pd.Series([25,26,25,23,30,29,23,34,40,30,51,46]),
   'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8,3.78,2.98,4.80,4.10,3.65])}

#Create a DataFrame
df = pd.DataFrame(d)
print (df.describe())

执行结果如下:

             Age     Rating
count  12.000000  12.000000
mean   31.833333   3.743333
std     9.232682   0.661628
min    23.000000   2.560000
25%    25.000000   3.230000
50%    29.500000   3.790000
75%    35.500000   4.132500
max    51.000000   4.800000

该函数给出了平均值,标准差和IQR值。 而且,函数排除字符列,并给出关于数字列的摘要。 include是用于传递关于什么列需要考虑用于总结的必要信息的参数。获取值列表; 默认情况下是”数字值”。

  • object – 汇总字符串列
  • number – 汇总数字列
  • all – 将所有列汇总在一起(不应将其作为列表值传递)

现在,在程序中使用以下语句并检查输出

import pandas as pd
import numpy as np

#Create a Dictionary of series
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Minsu','Jack',
   'Lee','David','Gasper','Betina','Andres']),
   'Age':pd.Series([25,26,25,23,30,29,23,34,40,30,51,46]),
   'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8,3.78,2.98,4.80,4.10,3.65])}

#Create a DataFrame
df = pd.DataFrame(d)
print (df.describe(include=['object']))

执行结果如下:

          Name
count       12
unique      12
top     Gasper
freq         1

现在,使用以下语句并查看输出

import pandas as pd
import numpy as np

#Create a Dictionary of series
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Minsu','Jack',
   'Lee','David','Gasper','Betina','Andres']),
   'Age':pd.Series([25,26,25,23,30,29,23,34,40,30,51,46]),
   'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8,3.78,2.98,4.80,4.10,3.65])}

#Create a DataFrame
df = pd.DataFrame(d)
print (df. describe(include='all'))

执行结果如下:

              Age   Name     Rating
count   12.000000     12  12.000000
unique        NaN     12        NaN
top           NaN  David        NaN
freq          NaN      1        NaN
mean    31.833333    NaN   3.743333
std      9.232682    NaN   0.661628
min     23.000000    NaN   2.560000
25%     25.000000    NaN   3.230000
50%     29.500000    NaN   3.790000
75%     35.500000    NaN   4.132500
max     51.000000    NaN   4.800000

Python教程

Java教程

Web教程

数据库教程

图形图像教程

大数据教程

开发工具教程

计算机教程