Python Pandas – 如何对具有秒频率的DateTimeIndex执行floor操作

Python Pandas – 如何对具有秒频率的DateTimeIndex执行floor操作

要对具有秒频率的DateTimeIndex执行floor操作,请使用 DateTimeIndex.floor() 方法。 对于秒频率,请使用值为 ‘S’freq 参数。

首先,导入所需的库−

import pandas as pd

创建一个周期为7,频率为S即秒的DatetimeIndex −

datetimeindex = pd.date_range('2021-10-18 07:20:32.261811624', periods=5,
tz='Australia/Adelaide', freq='40S')

显示DateTimeIndex−

print("DateTimeIndex...\n", datetimeindex)

对具有秒频率的DateTimeIndex上执行floor操作。对于秒频率,我们使用了’S’−

print("\nPerforming floor operation with seconds frequency...\n",
datetimeindex.floor(freq='S'))

更多Pandas文章,请阅读:Pandas教程

示例

以下是代码−

import pandas as pd

# DatetimeIndex with period 7 and frequency as S i.e. seconds
# timezone is Australia/Adelaide
datetimeindex = pd.date_range('2021-10-18 07:20:32.261811624', periods=5,
tz='Australia/Adelaide', freq='40S')

# display DateTimeIndex
print("DateTimeIndex...\n", datetimeindex)

# display DateTimeIndex frequency
print("DateTimeIndex frequency...\n", datetimeindex.freq)

# getting the second
res = datetimeindex.second

# display only the second
print("\nThe seconds from DateTimeIndex...\n", res)

# Floor operation on DateTimeIndex date with seconds frequency
# For seconds frequency, we have used 'S'
print("\nPerforming floor operation with seconds frequency...\n",
datetimeindex.floor(freq='S'))

输出

这将产生以下代码−

DateTimeIndex...
DatetimeIndex(['2021-10-18 07:20:32.261811624+10:30',
'2021-10-18 07:21:12.261811624+10:30',
'2021-10-18 07:21:52.261811624+10:30',
'2021-10-18 07:22:32.261811624+10:30',
'2021-10-18 07:23:12.261811624+10:30'],
dtype='datetime64[ns, Australia/Adelaide]', freq='40S')
DateTimeIndex frequency...
<40 * Seconds>

The seconds from DateTimeIndex...
Int64Index([32, 12, 52, 32, 12], dtype='int64')

Performing floor operation with seconds frequency...
DatetimeIndex(['2021-10-18 07:20:32+10:30', '2021-10-18 07:21:12+10:30',
'2021-10-18 07:21:52+10:30', '2021-10-18 07:22:32+10:30',
'2021-10-18 07:23:12+10:30'],
dtype='datetime64[ns, Australia/Adelaide]', freq=None)

Python教程

Java教程

Web教程

数据库教程

图形图像教程

大数据教程

开发工具教程

计算机教程