Python Pandas – 使用插值方法填充NaN值
可使用 interpolate() 方法填充 NaN 值。假设以下是我们在 Microsoft Excel 中打开带有一些 NaN 值的 CSV 文件-

从 CSV 文件加载数据到 Pandas DataFrame 中-
dataFrame = pd.read_csv("C:\Users\amit_\Desktop\SalesData.csv")
用 interpolate() 填充 NaN 值-
dataFrame.interpolate()
示例
以下是代码-
import pandas as pd
# Load data from a CSV file into a Pandas DataFrame
dataFrame = pd.read_csv("C:\Users\amit_\Desktop\SalesData.csv")
print("DataFrame...\n",dataFrame)
# fill NaN values with interpolate()
res = dataFrame.interpolate()
print("\nDataFrame after interpolation...\n",res)
输出
将会产生以下输出-
DataFrame...
Car Reg_Price Units
0 BMW 2500 100.0
1 Lexus 3500 NaN
2 Audi 2500 120.0
3 Jaguar 2000 NaN
4 Mustang 2500 110.0
DataFrame after interpolation...
Car Reg_Price Units
0 BMW 2500 100.0
1 Lexus 3500 110.0
2 Audi 2500 120.0
3 Jaguar 2000 115.0
4 Mustang 2500 110.0
极客教程