Python Pandas – 检查是否已将CustomBusinessHour Offset归一化

Python Pandas – 检查是否已将CustomBusinessHour Offset归一化

要检查是否已将CustomBusinessHour Offset归一化,请在Pandas中使用CustomBusinessHour.normalize属性。

首先,导入所需的库 −

import pandas as pd

在Pandas中设置时间戳对象 −

timestamp = pd.Timestamp('2021-10-25 08:35:10')

创建CustomBusinessHour Offset。CustomBusinessHour是DateOffset子类。我们使用“normalize”参数归一化了CustomBusinessDay −

cbhOffset = pd.tseries.offsets.CustomBusinessHour(n = 3, weekmask = 'Mon Tue Wed Fri Sat' ,normalize=True)

将Offset添加到Timestamp并显示更新的Timestamp −

print("\nUpdated Timestamp...\n",timestamp + cbhOffset)

检查CustomBusinessHour Offset是否已归一化 −

print("\nThe CustomBusinessHour Offset is normalized ?\n", cbhOffset.normalize)

示例

以下是代码 −

import pandas as pd

# 在Pandas中设置时间戳对象
timestamp = pd.Timestamp('2021-10-25 08:35:10')

# 显示时间戳
print("Timestamp...\n",timestamp)

# 创建CustomBusinessHour Offset
# CustomBusinessHour是DateOffset子类
# 有效工作日的Weekmask
# 我们使用“normalize”参数归一化了CustomBusinessDay
cbhOffset = pd.tseries.offsets.CustomBusinessHour(n = 3, weekmask = 'Mon Tue Wed Fri Sat',normalize=True)

# 显示CustomBusinessHour Offset
print("\nCustomBusinessHour Offset...\n",cbhOffset)

# 将Offset添加到Timestamp并显示更新的Timestamp
print("\nUpdated Timestamp...\n",timestamp + cbhOffset)

# 返回应用于给定CustomBusinessHour Offset对象的频率,作为字符串
print("\nFrequency applied on the given CustomBusinessHour Offset object...\n",cbhOffset.freqstr)

# 返回应用于给定CustomBusinessHour对象的频率的名称
print("\nThe name of the frequency on the CustomBusinessHour object..\n", cbhOffset.name)

# 检查CustomBusinessHour Offset是否已归一化
print("\nThe CustomBusinessHour Offset is normalized ?\n", cbhOffset.normalize)

输出

这将产生以下代码 −

Timestamp...
 2021-10-25 08:35:10

CustomBusinessHour Offset...
 <3 * CustomBusinessHours: CBH=09:00-17:00>

Updated Timestamp...
 2021-10-25 00:00:00

Frequency applied on the given CustomBusinessHour Offset object...
 3CBH

The name of the frequency on the CustomBusinessHour object..
 CBH

The CustomBusinessHour Offset is normalized ?
 True

Python教程

Java教程

Web教程

数据库教程

图形图像教程

大数据教程

开发工具教程

计算机教程