如何在Pandas中使用平均值填充NAN值?
使用mean()函数来计算平均值。计算具有NAN的列的平均值,并使用fillna()将NAN值填充为平均值。
让我们首先导入所需的库 –
import pandas as pd
import numpy as np
创建具有2列和一些NaN值的DataFrame。我们使用numpy np.NaN输入了这些NaN值-
dataFrame = pd.DataFrame(
{
"Car": ['BMW', 'Lexus', 'Lexus', 'Mustang', 'Bentley', 'Mustang'],"Units": [100, 150, np.NaN, 80, np.NaN, np.NaN]
}
)
找到具有NaN的列的列值的平均值,即这里的Units列。因此,单位列有100、150和80;因此,平均值将为110-
meanVal = dataFrame['Units'].mean()
将NaN替换为它所在的列的平均值。上面计算的平均值为110,因此NaN值将替换为110-
dataFrame['Units'].fillna(value=meanVal, inplace=True)
示例
以下是代码-
import pandas as pd
import numpy as np
# Create DataFrame
dataFrame = pd.DataFrame(
{
"Car": ['BMW', 'Lexus', 'Lexus', 'Mustang', 'Bentley', 'Mustang'],"Units": [100, 150, np.NaN, 80, np.NaN, np.NaN]
}
)
print"DataFrame ...\n",dataFrame
# finding mean of the column values with NaN i.e, for Units columns here
# so the Units column has 100, 150 and 80; therefore the mean would ne 110
meanVal = dataFrame['Units'].mean()
# Replace NaNs with the mean of the column where it is located
# the mean calculated above is 110, so NaN values will be replaced with 110
dataFrame['Units'].fillna(value=meanVal, inplace=True)
print"\nUpdated Dataframe after filling NaN values with mean...\n",dataFrame
输出
这将产生如下输出-
DataFrame ...
Car Units
0 BMW 100.0
1 Lexus 150.0
2 Lexus NaN
3 Mustang 80.0
4 Bentley NaN
5 Mustang NaN
Updated Dataframe after filling NaN values with mean...
Car Units
0 BMW 100.0
1 Lexus 150.0
2 Lexus 110.0
3 Mustang 80.0
4 Bentley 110.0
5 Mustang 110.0
极客教程