Python – 如何在Pandas Dataframe中计算列中NaN的数量?
要计算列中NaN的数量,请使用isna()。使用sum()将值相加并找到计数。
首先,让我们导入所需的库及其别名 –
import pandas as pd
import numpy as np
创建DataFrame。我们在“Units_Sold”列中使用Numpy np.inf设置NaN值 –
dataFrame = pd.DataFrame({"Car": ['BMW', 'Lexus', 'Tesla', 'Mustang', 'Mercedes', 'Jaguar'],"Cubic_Capacity": [2000, 1800, 1500, 2500, 2200, 3000],"Reg_Price": [7000, 1500, 5000, 8000, 9000, 6000],"Units_Sold": [ 100, np.NaN, 150, np.NaN, 200, np.NaN]
})
计算“Units_Sold”列中的NaN值 –
dataFrame["Units_Sold"].isna().sum()
更多Pandas文章,请阅读:Pandas教程
示例
以下是代码 –
import pandas as pd
import numpy as np
# creating dataframe
dataFrame = pd.DataFrame({"Car": ['BMW', 'Lexus', 'Tesla', 'Mustang', 'Mercedes', 'Jaguar'],"Cubic_Capacity": [2000, 1800, 1500, 2500, 2200, 3000],"Reg_Price": [7000, 1500, 5000, 8000, 9000, 6000],"Units_Sold": [ 100, np.NaN, 150, np.NaN, 200, np.NaN]
})
print("DataFrame...\n",dataFrame)
# count NaN values from column "Units_Sol"
count = dataFrame["Units_Sold"].isna().sum()
print("\n计算“Units_Sold”列中NaN值的数量...\n",count)
输出
这将产生以下输出 –
Dataframe...
Car Cubic_Capacity Reg_Price Units_Sold
0 BMW 2000 7000 100.0
1 Lexus 1800 1500 NaN
2 Tesla 1500 5000 150.0
3 Mustang 2500 8000 NaN
4 Mercedes 2200 9000 200.0
5 Jaguar 3000 6000 NaN
计算“Units_Sold”列中NaN值的数量...
3