如何在Python Pandas中使用字典序切片选择子集数据?

如何在Python Pandas中使用字典序切片选择子集数据?

介绍

Pandas具有使用索引位置或索引标签选择数据子集的双重选择功能。在本文中,我将向您展示如何“使用字典序切片选择子集数据”。

Google充满了数据集。在kaggle.com中搜索电影数据集。本文使用来自kaggle的电影数据集。

如何操作

1. 仅使用此示例所需的列导入电影数据集。

import pandas as pd
import numpy as np
movies = pd.read_csv("https://raw.githubusercontent.com/sasankac/TestDataSet/master/movies_data.csv",index_col="title",
usecols=["title","budget","vote_average","vote_count"])
movies.sample(n=5)
Python
title budget vote_average vote_count
Little Voice 0 6.6 61
Grown Ups 2 80000000 5.8 1155
The Best Years of Our Lives 2100000 7.6 143
Tusk 2800000 5.1 366
Operation Chromite 0 5.8 29

2. 我总是建议对索引进行排序,特别是如果索引由字符串组成。如果索引已排序,您将注意到在处理巨大数据集时的差异。

如果不对索引进行排序怎么办?

没关系,您的代码将永远运行。开玩笑,如果索引标签未排序,则Pandas必须逐个遍历所有标签以匹配查询。就像没有索引页的牛津字典,你该怎么办?如果索引排序,则您可以快速跳转到要提取的标签,Pandas也是如此。

首先,我们检查索引是否已排序。

# check if the index is sorted or not ?
movies.index.is_monotonic

False
Python

3. 显然,索引未排序。我们将尝试选择以A%开头的电影。这就像写

select * from movies where title like'A%'
Python
movies.loc["Aa":"Bb"]
Python
---------------------------------------------------------------------------
ValueErrorTraceback (most recent call last):
~\anaconda3\lib\site-packages\pandas\core\indexes\base.py in get_slice_bound(self, labe l, side, kind)
4844try:
    -> 4845return self._searchsorted_monotonic(label, side) 4846except ValueError:
~\anaconda3\lib\site-packages\pandas\core\indexes\base.py in _searchsorted_monotonic(se lf, label, side)
4805
    -> 4806raise ValueError("index must be monotonic increasing or decreasing")
4807
ValueError: index must be monotonic increasing or decreasing

During handling of the above exception, another exception occurred:

KeyErrorTraceback (most recent call last):
in
----> 1 movies.loc["Aa": "Bb"]

~\anaconda3\lib\site-packages\pandas\core\indexing.py in getitem (self, key)
1766
1767maybe_callable = com.apply_if_callable(key, self.obj)
    -> 1768return self._getitem_axis(maybe_callable, axis=axis) 1769
1770def _is_scalar_access(self, key: Tuple):

~\anaconda3\lib\site-packages\pandas\core\indexing.py in _getitem_axis(self, key, axis)
1910if isinstance(key, slice):
1911self._validate_key(key, axis)
    -> 1912return self._get_slice_axis(key, axis=axis) 1913elif com.is_bool_indexer(key):
1914return self._getbool_axis(key, axis=axis)

~\anaconda3\lib\site-packages\pandas\core\indexing.py in _get_slice_axis(self, slice_ob j, axis)
1794
1795labels = obj._get_axis(axis)
    -> 1796indexer = labels.slice_indexer(
1797slice_obj.start, slice_obj.stop, slice_obj.step, kind=self.name 1798)

~\anaconda3\lib\site-packages\pandas\core\indexes\base.py in slice_indexer(self, start, end, step, kind)
4711slice(1, 3)
4712"""
    -> 4713start_slice, end_slice = self.slice_locs(start, end, step=step, kind=ki nd)
4714
4715# return a slice

~\anaconda3\lib\site-packages\pandas\core\indexes\base.py in slice_locs(self, start, en d, step, kind)
4924start_slice = None
4925if start is not None:
    -> 4926start_slice = self.get_slice_bound(start, "left", kind) 4927if start_slice is None:
4928start_slice = 0

~\anaconda3\lib\site-packages\pandas\core\indexes\base.py in get_slice_bound(self, labe l, side, kind)
4846except ValueError:
4847# raise the original KeyError
    -> 4848raise err
4849
4850if isinstance(slc, np.ndarray):

~\anaconda3\lib\site-packages\pandas\core\indexes\base.py in get_slice_bound(self, labe l, side, kind)
4840# we need to look up the label
4841try:
    -> 4842slc = self.get_loc(label) 4843except KeyError as err:
4844try:

~\anaconda3\lib\site-packages\pandas\core\indexes\base.py in get_loc(self, key, method,

tolerance)
2646return self._engine.get_loc(key)
2647except KeyError:
    -> 2648return self._engine.get_loc(self._maybe_cast_indexer(key))
2649indexer = self.get_indexer([key], method=method, tolerance=tolerance) 2650if indexer.ndim > 1 or indexer.size > 1:

pandas\_libs\index.pyx in pandas._libs.index.IndexEngine.get_loc()
pandas\_libs\index.pyx in pandas._libs.index.IndexEngine.get_loc()
pandas\_libs\index.pyx in pandas._libs.index.IndexEngine._get_loc_duplicates()

pandas\_libs\index.pyx in pandas._libs.index.IndexEngine._maybe_get_bool_indexer()

KeyError: 'Aa'
Python

4. 将索引按升序排序,并尝试相同的命令以利用字典排序进行切片。

True
Python

Python教程

Java教程

Web教程

数据库教程

图形图像教程

大数据教程

开发工具教程

计算机教程

登录

注册