Python Pandas DataFrame.ix[]

Python Pandas DataFrame.ix[]

Python是一种进行数据分析的伟大语言,主要是因为以数据为中心的Python软件包的奇妙生态系统。Pandas就是这些包中的一个,它使导入和分析数据变得更加容易。

Pandas DataFrame.ix[ ] 是基于标签和整数的分片技术。除了纯粹的基于标签和整数的方法,Pandas还提供了一种混合方法,使用ix[]操作符对对象进行选择和子集。ix[]是最通用的索引器,将支持loc[]和iloc[]中的任何输入。

语法:

DataFrame.ix[]
Python

参数:
索引位置:整数或整数列表中的行的索引位置。
索引标签:字符串或行的索引标签的字符串列表

返回:数据框或系列,取决于参数

代码 #1:

# importing pandas package 
import pandas as geek
    
# making data frame from csv file
data = geek.read_csv("https://media.geeksforgeeks.org/wp-content/uploads/nba.csv")  
    
# Integer slicing
print("Slicing only rows(till index 4):")
x1 = data.ix[:4, ]
print(x1, "\n")
   
print("Slicing rows and columns(rows=4, col 1-4, excluding 4):")
x2 = data.ix[:4, 1:4]
print(x2)
Python

输出 :

Python Pandas DataFrame.ix[ ] 。
Python Pandas DataFrame.ix[ ] 。

代码 #2:

# importing pandas package 
import pandas as geek
    
# making data frame from csv file
data = geek.read_csv("nba.csv")  
    
# Index slicing on Height column
print("After index slicing:")
x1 = data.ix[10:20, 'Height']
print(x1, "\n")
  
# Index slicing on Salary column
x2 = data.ix[10:20, 'Salary']
print(x2)
Python

输出:

Python Pandas DataFrame.ix[ ] 。
Python Pandas DataFrame.ix[ ] 。

代码 #3:

# importing pandas and numpy
import pandas as pd
import numpy as np
   
df = pd.DataFrame(np.random.randn(10, 4),
          columns = ['A', 'B', 'C', 'D'])
  
print("Original DataFrame: \n" , df)
   
# Integer slicing
print("\n Slicing only rows:")
print("--------------------------")
x1 = df.ix[:4, ]
print(x1)
   
print("\n Slicing rows and columns:")
print("----------------------------")
x2 = df.ix[:4, 1:3]
print(x2)
Python

输出 :

Python Pandas DataFrame.ix[ ] 。

代码 #4:

# importing pandas and numpy
import pandas as pd
import numpy as np
   
df = pd.DataFrame(np.random.randn(10, 4),
          columns = ['A', 'B', 'C', 'D'])
  
print("Original DataFrame: \n" , df)
   
# Integer slicing (printing all the rows of column 'A')
print("\n After index slicing (On 'A'):")
print("--------------------------")
x = df.ix[:, 'A']
  
print(x)
Python

输出 :

Python Pandas DataFrame.ix[ ] 。

Python教程

Java教程

Web教程

数据库教程

图形图像教程

大数据教程

开发工具教程

计算机教程