如何在Pandas数据框架中删除有NaN值的行

如何在Pandas数据框架中删除有NaN值的行

NaN是Not A Number的缩写,是表示数据中缺失值的常用方法之一。它是一个特殊的浮点值,不能转换为浮点以外的任何其他类型。NaN值是数据分析中的主要问题之一。为了得到理想的结果,处理NaN是非常必要的。在这篇文章中,我们将讨论如何删除有NaN值的行。
我们可以通过使用dropna()函数在Pandas DataFrame中删除有NaN值的行。

 df.dropna() 
Python

也可以用下面的语句来删除与特定列有关的NaN值的行。

df.dropna(subset, inplace=True)
Python

将in place设置为True,subset设置为列名列表,以删除这些列下有NaN的所有行。

示例 1:

# importing libraries
import pandas as pd
import numpy as np
 
num = {'Integers': [10, 15, 30, 40, 55, np.nan,
                    75, np.nan, 90, 150, np.nan]}
 
# Create the dataframe
df = pd.DataFrame(num, columns =['Integers'])
 
# dropping the rows having NaN values
df = df.dropna()
 
# printing the result
df
Python

输出:

如何在Pandas数据框架中删除有NaN值的行?

注意:我们也可以使用reset_index()方法来重置指数。

df = df.reset_index(drop=True)
Python

示例 2:

# importing libraries
import pandas as pd
import numpy as np
 
nums = {'Integers_1': [10, 15, 30, 40, 55, np.nan,
                       75, np.nan, 90, 150, np.nan],
           'Integers_2': [np.nan, 21, 22, 23, np.nan,
                          24, 25, np.nan, 26, np.nan,
                          np.nan]}
 
# Create the dataframe
df = pd.DataFrame(nums, columns =['Integers_1', 'Integers_2'])
 
# dropping the rows having NaN values
df = df.dropna()
 
# To reset the indices
df = df.reset_index(drop = True)
 
# Print the dataframe
df
Python

输出:

如何在Pandas数据框架中删除有NaN值的行?

示例 3:

# importing libraries
import pandas as pd
import numpy as np
 
nums = {'Student Number': [ 1001, 1111, 1202, 1229, 1330,
                           1335, np.nan, 1400, 1150, np.nan],
           'Seat Number': [np.nan, 15, 22, 43, np.nan, 44,
                           55, np.nan, 57, np.nan]}
 
# Create the dataframe
df = pd.DataFrame(nums, columns =['Student Number', 'Seat Number'])
 
# dropping the rows having NaN values
df = df.dropna()
 
# To reset the indices
df = df.reset_index(drop = True)
 
# Print the dataframe
df
Python

输出:

如何在Pandas数据框架中删除有NaN值的行?

示例 4:

# importing libraries
import pandas as pd
import numpy as np
 
car = {'Year of Launch': [ 1999, np.nan, 1986, 2020, np.nan,
                          1991, 2007, 2011, 2001, 2017],
           'Engine Number': [np.nan, 15, 22, 43, 44, np.nan,
                             55, np.nan, 57, np.nan],
        'Chasis Unique Id': [4023, np.nan, 3115, 4522, 3643,
                             3774, 2955, np.nan, 3587, np.nan]}
 
# Create the dataframe
df = pd.DataFrame(car, columns =['Year of Launch', 'Engine Number',
                                 'Chasis Unique Id'])
 
# dropping the rows having NaN values
df = df.dropna()
 
# To reset the indices
df = df.reset_index(drop = True)
 
# Print the dataframe
df
Python

输出:

如何在Pandas数据框架中删除有NaN值的行?

示例 5:

# Importing libraries
import pandas as pd
import numpy as np
 
# Creating a dictionary
dit = {'August': [10, np.nan, 34, 4.85, 71.2, 1.1],
       'September': [np.nan, 54, 68, 9.25, pd.NaT, 0.9],
       'October': [np.nan, 5.8, 8.52, np.nan, 1.6, 11],
       'November': [pd.NaT, 5.8, 50, 8.9, 77, pd.NaT]}
 
# Converting it to data frame
df = pd.DataFrame(data=dit)
 
# Dropping the rows having NaN/NaT values
# when threshold of nan values is 2
df = df.dropna(thresh=2)
 
# Resetting the indices using df.reset_index()
df = df.reset_index(drop=True)
 
df
Python

输出:

如何在Pandas数据框架中删除有NaN值的行?

在上面的例子中,我们在df.dropna()函数中使用了thresh = 2,这意味着它将删除所有Nan/NaT值为2或超过2的行,其他的将保持原样。

示例 6:

# Importing libraries
import pandas as pd
import numpy as np
 
# Creating a dictionary
dit = {'August': [10, np.nan, 34, 4.85, 71.2, 1.1],
       'September': [np.nan, 54, 68, 9.25, pd.NaT, 0.9],
       'October': [np.nan, 5.8, 8.52, np.nan, 1.6, 11],
       'November': [pd.NaT, 5.8, 50, 8.9, 77, pd.NaT]}
 
# Converting it to data frame
df = pd.DataFrame(data=dit)
 
# Dropping the rowns having NaN/NaT values
# under certain label
df = df.dropna(subset=['October'])
 
# Resetting the indices using df.reset_index()
df = df.reset_index(drop=True)
 
df
Python

输出:

如何在Pandas数据框架中删除有NaN值的行?

在上面的例子中,我们在df.dropna()函数中使用了subset = [‘October’],这意味着它将删除所有在 “October “标签下有Nan/NaT值的记录。

Python教程

Java教程

Web教程

数据库教程

图形图像教程

大数据教程

开发工具教程

计算机教程

登录

注册