本文介绍 Python 用Cython写高性能的数组操作 相关示例。
Python 用Cython写高性能的数组操作 问题
你要写高性能的操作来自NumPy之类的数组计算函数。 你已经知道了Cython这样的工具会让它变得简单,但是并不确定该怎样去做。
Python 用Cython写高性能的数组操作 解决方案
作为一个例子,下面的代码演示了一个Cython函数,用来修整一个简单的一维双精度浮点数数组中元素的值。
要编译和构建这个扩展,你需要一个像下面这样的 setup.py
文件 (使用 python3 setup.py build_ext --inplace
来构建它):
你会发现结果函数确实对数组进行的修正,并且可以适用于多种类型的数组对象。例如:
你还会发现运行生成结果非常的快。 下面我们将本例和numpy中的已存在的 clip()
函数做一个性能对比:
正如你看到的,它要快很多——这是一个很有趣的结果,因为NumPy版本的核心代码还是用C语言写的。
Python 用Cython写高性能的数组操作 讨论
本节利用了Cython类型的内存视图,极大的简化了数组的操作。 cpdef clip()
声明了 clip()
同时为C级别函数以及Python级别函数。 在Cython中,这个是很重要的,因为它表示此函数调用要比其他Cython函数更加高效 (比如你想在另外一个不同的Cython函数中调用clip())。
类型参数 double[:] a
和 double[:] out
声明这些参数为一维的双精度数组。 作为输入,它们会访问任何实现了内存视图接口的数组对象,这个在PEP 3118有详细定义。 包括了NumPy中的数组和内置的array库。
当你编写生成结果为数组的代码时,你应该遵循上面示例那样设置一个输出参数。 它会将创建输出数组的责任给调用者,不需要知道你操作的数组的具体细节 (它仅仅假设数组已经准备好了,只需要做一些小的检查比如确保数组大小是正确的)。 在像NumPy之类的库中,使用 numpy.zeros()
或 numpy.zeros_like()
创建输出数组相对而言比较容易。另外,要创建未初始化数组, 你可以使用 numpy.empty()
或 numpy.empty_like()
. 如果你想覆盖数组内容作为结果的话选择这两个会比较快点。
在你的函数实现中,你只需要简单的通过下标运算和数组查找(比如a[i],out[i]等)来编写代码操作数组。 Cython会负责为你生成高效的代码。
clip()
定义之前的两个装饰器可以优化下性能。 @cython.boundscheck(False)
省去了所有的数组越界检查, 当你知道下标访问不会越界的时候可以使用它。 @cython.wraparound(False)
消除了相对数组尾部的负数下标的处理(类似Python列表)。 引入这两个装饰器可以极大的提升性能(测试这个例子的时候大概快了2.5倍)。
任何时候处理数组时,研究并改善底层算法同样可以极大的提示性能。 例如,考虑对 clip()
函数的如下修正,使用条件表达式:
实际测试结果是,这个版本的代码运行速度要快50%以上(2.44秒对比之前使用 timeit()
测试的3.76秒)。
到这里为止,你可能想知道这种代码怎么能跟手写C语言PK呢? 例如,你可能写了如下的C函数并使用前面几节的技术来手写扩展:
我们没有展示这个的扩展代码,但是试验之后,我们发现一个手写C扩展要比使用Cython版本的慢了大概10%。 最底下的一行比你想象的运行的快很多。
你可以对实例代码构建多个扩展。 对于某些数组操作,最好要释放GIL,这样多个线程能并行运行。 要这样做的话,需要修改代码,使用 with nogil:
语句:
如果你想写一个操作二维数组的版本,下面是可以参考下:
希望读者不要忘了本节所有代码都不会绑定到某个特定数组库(比如NumPy)上面。 这样代码就更有灵活性。 不过,要注意的是如果处理数组要涉及到多维数组、切片、偏移和其他因素的时候情况会变得复杂起来。