这里我们将使用余弦相似度计算两个向量之间的相似度。我们使用一个实际的数据集来说明如何计算相似度。假设我们有一个包含电影名称和相应标签的表movies。我们将使用标签向量来表示每个电影。标签向量是一个长度为N的二进制向量,其中第i位等于1表示该电影包含第i个标签,否则为0。
SELECT
(SELECT SUM(v1.*v2) FROM (
SELECT SUBSTRING_INDEX(m1.tags, ',', 1) as t1, SUBSTRING_INDEX(m2.tags, ',', 1) as t2 FROM movies m1, movies m2 WHERE m1.id=1 AND m2.id=2
UNION ALL
SELECT SUBSTRING_INDEX(SUBSTRING_INDEX(m1.tags, ',', 2), ',', -1) as t1, SUBSTRING_INDEX(SUBSTRING_INDEX(m2.tags, ',', 2), ',', -1) as t2 FROM movies m1, movies m2 WHERE m1.id=1 AND m2.id=2
UNION ALL
SELECT SUBSTRING_INDEX(SUBSTRING_INDEX(m1.tags, ',', 3), ',', -1) as t1, SUBSTRING_INDEX(SUBSTRING_INDEX(m2.tags, ',', 3), ',', -1) as t2 FROM movies m1, movies m2 WHERE m1.id=1 AND m2.id=2
UNION ALL
SELECT SUBSTRING_INDEX(SUBSTRING_INDEX(m1.tags, ',', 4), ',', -1) as t1, SUBSTRING_INDEX(SUBSTRING_INDEX(m2.tags, ',', 4), ',', -1) as t2 FROM movies m1, movies m2 WHERE m1.id=1 AND m2.id=2
UNION ALL
SELECT SUBSTRING_INDEX(SUBSTRING_INDEX(m1.tags, ',', 5), ',', -1) as t1, SUBSTRING_INDEX(SUBSTRING_INDEX(m2.tags, ',', 5), ',', -1) as t2 FROM movies m1, movies m2 WHERE m1.id=1 AND m2.id=2
UNION ALL
SELECT SUBSTRING_INDEX(SUBSTRING_INDEX(m1.tags, ',', 6), ',', -1) as t1, SUBSTRING_INDEX(SUBSTRING_INDEX(m2.tags, ',', 6), ',', -1) as t2 FROM movies m1, movies m2 WHERE m1.id=1 AND m2.id=2
UNION ALL
SELECT SUBSTRING_INDEX(SUBSTRING_INDEX(m1.tags, ',', 7), ',', -1) as t1, SUBSTRING_INDEX(SUBSTRING_INDEX(m2.tags, ',', 7), ',', -1) as t2 FROM movies m1, movies m2 WHERE m1.id=1 AND m2.id=2
UNION ALL
SELECT SUBSTRING_INDEX(SUBSTRING_INDEX(m1.tags, ',', 8), ',', -1) as t1, SUBSTRING_INDEX(SUBSTRING_INDEX(m2.tags, ',', 8), ',', -1) as t2 FROM movies m1, movies m2 WHERE m1.id=1 AND m2.id=2
) as v1, (
SELECT SQRT(SUM(t1*t1)) as norm1, SQRT(SUM(t2*t2)) as norm2 FROM (
SELECT POW(SUBSTRING_INDEX(m1.tags, ',', 1), 2) as t1, POW(SUBSTRING_INDEX(m2.tags, ',', 1), 2) as t2 FROM movies m1, movies m2 WHERE m1.id=1 AND m2.id=2
UNION ALL
SELECT POW(SUBSTRING_INDEX(SUBSTRING_INDEX(m1.tags, ',', 2), ',', -1), 2) as t1, POW(SUBSTRING_INDEX(SUBSTRING_INDEX(m2.tags, ',', 2), ',', -1), 2) as t2 FROM movies m1, movies m2 WHERE m1.id=1 AND m2.id=2
UNION ALL
SELECT POW(SUBSTRING_INDEX(SUBSTRING_INDEX(m1.tags, ',', 3), ',', -1), 2) as t1, POW(SUBSTRING_INDEX(SUBSTRING_INDEX(m2.tags, ',', 3), ',', -1), 2) as t2 FROM movies m1, movies m2 WHERE m1.id=1 AND m2.id=2
UNION ALL
SELECT POW(SUBSTRING_INDEX(SUBSTRING_INDEX(m1.tags, ',', 4), ',', -1), 2) as t1, POW(SUBSTRING_INDEX(SUBSTRING_INDEX(m2.tags, ',', 4), ',', -1), 2) as t2 FROM movies m1, movies m2 WHERE m1.id=1 AND m2.id=2
UNION ALL
SELECT POW(SUBSTRING_INDEX(SUBSTRING_INDEX(m1.tags, ',', 5), ',', -1), 2) as t1, POW(SUBSTRING_INDEX(SUBSTRING_INDEX(m2.tags, ',', 5), ',', -1), 2) as t2 FROM movies m1, movies m2 WHERE m1.id=1 AND m2.id=2
UNION ALL
SELECT POW(SUBSTRING_INDEX(SUBSTRING_INDEX(m1.tags, ',', 6), ',', -1), 2) as t1, POW(SUBSTRING_INDEX(SUBSTRING_INDEX(m2.tags, ',', 6), ',', -1), 2) as t2 FROM movies m1, movies m2 WHERE m1.id=1 AND m2.id=2
UNION ALL
SELECT POW(SUBSTRING_INDEX(SUBSTRING_INDEX(m1.tags, ',', 7), ',', -1), 2) as t1, POW(SUBSTRING_INDEX(SUBSTRING_INDEX(m2.tags, ',', 7), ',', -1), 2) as t2 FROM movies m1, movies m2 WHERE m1.id=1 AND m2.id=2
UNION ALL
SELECT POW(SUBSTRING_INDEX(SUBSTRING_INDEX(m1.tags, ',', 8), ',', -1), 2) as t1, POW(SUBSTRING_INDEX(SUBSTRING_INDEX(m2.tags, ',', 8), ',', -1), 2) as t2 FROM movies m1, movies m2 WHERE m1.id=1 AND m2.id=2
) as t
) as v2) / (v1.norm1*v2.norm2) as cos_sim;
该查询计算Movie1和Movie2之间的余弦相似度。查询中的子查询将两个标签向量拆分为一系列单个标签,并对每个标签计算乘积。乘积的总和即为两个标签向量的数量积。该巨型查询不太便于阅读和调试,但将有效地计算余弦相似度。
本文介绍了如何在MySQL中计算相似度。我们讨论了三种常见的相似度计算方法:欧几里得相似度、余弦相似度和杰卡德相似度。我们还提供了一个使用余弦相似度计算标签向量之间相似度的示例。无论在哪个领域,计算相似度都是数据分析的关键部分,在MySQL数据库中,可以使用以上方法方便地计算相似度。